
EBK ENGINEERING MECHANICS: DYNAMICS, SI
8th Edition
ISBN: 9781119047315
Author: Bolton
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.4, Problem 88P
To determine
The equation of motion of the system.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3. The design of a pump and pipe system has been completed, except for the valves. The system
is used to transpor10t water at 120°F through 2 nom sch 40 commercial steel pipe at a required
flow rate of 85 gpm. Without the valves, the pump selected has the capability to overcome an
additional 18 psi of pressure drop due to the valves and still provide the required flow rate. The
pipe/valve joints are threaded. Determine how many 2-inch globe valves can be installed in this
pump and pipe system.
4. Figure 1 shows a pump and pipe network being used to transport heptane at 120°F to a large,
elevated, closed storage tank. The tank is pressurized and maintained at 18 psia. The volumetric
flow rate of the heptane is 500 gpm.
a. Specify the nominal diameter of the check valve.
b. Determine the pump discharge pressure required (psia) to move the heptane
through the discharge pipe.
Plank
=
18 psia
Liquid level
Large pressurized
storage tank
40 ft
All pipes are 6-nom sch 40 commercial steel
Standard 90° elbows and 180° bend
Total length of straight pipe = 115 ft
Class 300 swing
check valve
INH
Pump
Figure 1: Pressurized storage tank system
2. In a particular section of a fluid system, a 30% ethylene glycol mixture is flowing through a 6-
nom xs cast iron pipe at a temperature of 0°C. In this section of piping, the velocity must be
maintained in the range 1.5 m/s
Chapter 8 Solutions
EBK ENGINEERING MECHANICS: DYNAMICS, SI
Ch. 8.2 - When a 3-kg collar is placed upon the pan which is...Ch. 8.2 - Prob. 2PCh. 8.2 - Prob. 3PCh. 8.2 - For the system of Prob. 8/2, determine the...Ch. 8.2 - Prob. 5PCh. 8.2 - Prob. 6PCh. 8.2 - Prob. 7PCh. 8.2 - The vertical plunger has a mass of 2.5 kg and is...Ch. 8.2 - Determine the period τ for the system shown. The...Ch. 8.2 - Prob. 10P
Ch. 8.2 - Prob. 11PCh. 8.2 - Prob. 12PCh. 8.2 - Prob. 13PCh. 8.2 - Prob. 14PCh. 8.2 - Prob. 15PCh. 8.2 - Calculate the natural frequency fn of vibration if...Ch. 8.2 - Prob. 17PCh. 8.2 - Prob. 18PCh. 8.2 - Prob. 19PCh. 8.2 - Prob. 20PCh. 8.2 - Prob. 21PCh. 8.2 - Prob. 22PCh. 8.2 - Prob. 23PCh. 8.2 - Prob. 24PCh. 8.2 - Prob. 25PCh. 8.2 - Prob. 26PCh. 8.2 - Prob. 27PCh. 8.2 - Prob. 28PCh. 8.2 - Prob. 29PCh. 8.2 - Prob. 30PCh. 8.2 - Prob. 31PCh. 8.2 - Prob. 32PCh. 8.2 - Prob. 33PCh. 8.2 - Prob. 34PCh. 8.2 - Derive the differential equation of motion for the...Ch. 8.2 - Prob. 36PCh. 8.2 - Determine the equation of motion for the system in...Ch. 8.2 - Prob. 38PCh. 8.2 - Prob. 39PCh. 8.2 - Prob. 40PCh. 8.2 - Prob. 41PCh. 8.2 - Prob. 42PCh. 8.2 - Prob. 43PCh. 8.2 - Prob. 44PCh. 8.3 - Prob. 45PCh. 8.3 - Prob. 46PCh. 8.3 - Prob. 47PCh. 8.3 - Prob. 48PCh. 8.3 - Prob. 49PCh. 8.3 - Prob. 50PCh. 8.3 - Prob. 51PCh. 8.3 - Prob. 52PCh. 8.3 - Prob. 53PCh. 8.3 - The 4-lb body is attached to two springs, each of...Ch. 8.3 - Prob. 55PCh. 8.3 - The motion of the outer frame B is given by xB = b...Ch. 8.3 - Prob. 57PCh. 8.3 - Prob. 58PCh. 8.3 - When the person stands in the center of the floor...Ch. 8.3 - Prob. 60PCh. 8.3 - Derive the equation of motion for the inertial...Ch. 8.3 - Prob. 62PCh. 8.3 - Prob. 63PCh. 8.3 - Prob. 64PCh. 8.3 - Prob. 65PCh. 8.3 - Prob. 66PCh. 8.3 - Derive and solve the equation of motion for the...Ch. 8.3 - Prob. 68PCh. 8.3 - Prob. 69PCh. 8.3 - Prob. 70PCh. 8.4 - The light rod and attached small spheres of mass m...Ch. 8.4 - Prob. 72PCh. 8.4 - The thin square plate is suspended from a socket...Ch. 8.4 - Prob. 74PCh. 8.4 - The 20-lb spoked wheel has a centroidal radius of...Ch. 8.4 - Prob. 76PCh. 8.4 - The uniform sector has mass m and is freely hinged...Ch. 8.4 - Prob. 78PCh. 8.4 - Prob. 79PCh. 8.4 - Prob. 80PCh. 8.4 - Prob. 81PCh. 8.4 - Prob. 82PCh. 8.4 - Prob. 83PCh. 8.4 - Prob. 84PCh. 8.4 - Prob. 85PCh. 8.4 - Prob. 86PCh. 8.4 - Prob. 87PCh. 8.4 - Prob. 88PCh. 8.4 - Prob. 89PCh. 8.4 - Prob. 90PCh. 8.4 - Prob. 91PCh. 8.4 - Prob. 92PCh. 8.4 - Prob. 93PCh. 8.4 - Prob. 94PCh. 8.4 - Prob. 95PCh. 8.4 - Prob. 96PCh. 8.5 - The 1.5-kg bar OA is suspended vertically from the...Ch. 8.5 - The light rod and attached sphere of mass m are at...Ch. 8.5 - A uniform rod of mass m and length l is welded at...Ch. 8.5 - The spoked wheel of radius r, mass m, and...Ch. 8.5 - Prob. 101PCh. 8.5 - The length of the spring is adjusted so that the...Ch. 8.5 - The body consists of two slender uniform rods...Ch. 8.5 - By the method of this article, determine the...Ch. 8.5 - Prob. 105PCh. 8.5 - Prob. 106PCh. 8.5 - Prob. 107PCh. 8.5 - Prob. 108PCh. 8.5 - Prob. 109PCh. 8.5 - Prob. 110PCh. 8.5 - Prob. 111PCh. 8.5 - Prob. 112PCh. 8.5 - Prob. 113PCh. 8.5 - Prob. 114PCh. 8.5 - Prob. 115PCh. 8.5 - Prob. 116PCh. 8.5 - Prob. 117PCh. 8.5 - The quarter-circular sector of mass m and radius r...Ch. 8.6 - Prob. 119RPCh. 8.6 - Prob. 120RPCh. 8.6 - Prob. 121RPCh. 8.6 - Prob. 122RPCh. 8.6 - Prob. 123RPCh. 8.6 - Prob. 124RPCh. 8.6 - Prob. 125RPCh. 8.6 - Prob. 126RPCh. 8.6 - Prob. 127RPCh. 8.6 - Prob. 128RPCh. 8.6 - Prob. 129RPCh. 8.6 - Prob. 130RPCh. 8.6 - Prob. 131RPCh. 8.6 - Prob. 132RPCh. 8.6 - Prob. 133RPCh. 8.6 - Prob. 137RPCh. 8.6 - Prob. 138RPCh. 8.6 - Prob. 139RPCh. 8.6 - Prob. 140RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. Steam leaves the boiler of a power plant at 5 MPa, 500°C as shown in the following figure. As the steam passes to the turbine, the temperature drops to 496°C before it enters the turbine due to a heat loss through the pipe's insulation. The pressure drop in the pipe connecting the boiler to the turbine is negligible. The steam then passes through an adiabatic turbine and exits at 10 kPa. The turbine has an isentropic efficiency of 85% and is delivering 1000 MW of power. Determine the following. P = 5 MPa T₁ = 500°C Boiler P₁₂ =5 MPa Τ =496°C 7 = 85% W = 1,000 MW P=1 atm To=25°C Turbine 3+ P = 10 kPa a. The heat transfer rate from the pipe connecting the boiler to the turbine (in MW) b. The change in flow exergy rate as the steam flows through the pipe (MW). This represents exergy that is lost to the environment and unavailable for power delivery. Comment on the magnitude of this exergy loss compared to the power delivered by the turbine. What factor(s) would warrant better…arrow_forwardAn aluminum rod of length L = 1m has mass density p = 2700 kg and Young's modulus E = 70 GPa. The rod is fixed at both ends. The exact natural eigenfrequencies of the rod are wexact E = √ ρ for n=1,2,3,. . . . 1. What is the minimum number of linear elements necessary to determine the fundamental frequency w₁ of the system? Discretize the rod in that many elements of equal length, assemble the global system of equations KU = w² MU, and find the fundamental frequency w₁. Compute the relative error e₁ = (w1 - wexact) /w exact Sketch the fundamental mode of vibration. 2. Use COMSOL to solve the same problem. Show the steps necessary to find the fundamental frequency and mode of the rod. What is the relative error using linear elements and a normal mesh?arrow_forwardA ball with a mass of 5.0 kg is hanging from a string and is initially at rest. A bullet with a mass of 10.0 g and a velocity of 200.0 m/s is fired at the ball. The bullet embeds itself inside the ball. How high (h) do the ball and the bullet rise? Gravitational acceleration: g=9.81g = 9.81g=9.81 m/s².arrow_forward
- Don't use chatgpt. Need handwritten solution. Mechanical engineeringarrow_forwardMechanical engineering question.arrow_forwardA shaft is loaded in bending and torsion such that Ma = 70 N·m, T₁ = 45 N · m, M = 55 N. m, and T = 35 N m. For the shaft, S₁ = 700 MPa and S = 560 MPa, and a fully corrected endurance limit of S₂ = 210 MPa is assumed. Let K = 2.2 and K = 1.8. With a Se design factor of 2.0 determine the minimum acceptable diameter of the shaft using the a) DE- Goodman b) DE-Morrow c) DE-Gerber d) DE-SWTarrow_forward
- The feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…arrow_forwardSpur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearingarrow_forwardProblem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forward
- An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License