Beginning Statistics, 2nd Edition
Beginning Statistics, 2nd Edition
2nd Edition
ISBN: 9781932628678
Author: Carolyn Warren; Kimberly Denley; Emily Atchley
Publisher: Hawkes Learning Systems
Question
Book Icon
Chapter 8.4, Problem 12E
To determine

To Construct:

A 99% confidence interval for the percentage of all computer chips from that factory that are not defective

Expert Solution & Answer
Check Mark

Answer to Problem 12E

Solution:

A 99% confidence interval for the percentage of all computer chips from that factory that are not defective is (92.4,99.5)

Explanation of Solution

Given:

Sample size n=200.

Individual not matching the given characteristic x=4%ofn.

Confidence level c=99%.

Description:

A random experiment from a population of size N has a fixed discrete number of trials (n) out of which a certain number of them (x) are regarded as successes, having a certain characteristic.

Based on these numbers, the sample proportion (p^) is obtained using the relation below:

p^=xn.

The sample proportions are binomially distributed (and hence are discrete), which can be approximated using a normal distribution using the continuity correction given that the sample size is large enough (n30) to ensure that np^5 and n(1p^)5.

The population proportion is best estimated point-wise by the sample proportion.

The margin of error is defined as the maximum distance from point estimate that the confidence interval covers.

In terms of appropriate z-value and sample proportion, the margin of error is defined as:

E=zα2p^(1p^)n

Where zα2 is the critical value whose right has the area α2, p^ is the sample proportion and n is the sample size.

The confidence interval bounds are equidistant from the best point estimate by the amount of margin of error as:

confidence interval=(p^E,p^+E).

The number of individuals in the sample following the characteristic in the question is divided by the sample size to obtain the sample proportion which is best point estimate to the population proportion.

Then, the margin of error is computed following which, the bounds of interval estimate are obtained from the best point estimate by subtracting and adding respectively margin of error.

Calculation:

The value of x is:

x=200(4%of200)=200(4100×200)=2008=192

Dividing x by n gives:

p^=xn=192200=0.96

Which gives the population proportion estimate.

Since c=0.99, the value of α2 is:

α2=10.992=0.012=0.005

The critical value is looked up in the standard normal table which yields:

z0.005=2.57.

Then the margin of error is:

E=2.57×0.96×(10.96)200=2.57×0.0384200=2.57×0.000192=2.57×0.01385641...0.035610964

Rounding off to the 4th decimal place gives the margin of error to be:

E=0.0356.

Then, lower bound of confidence interval is:

p^E=0.960.0356=0.9244

Rounding off which to the 3rd decimal place gives 0.924, which converted into percentage gives 92.4%.

Then, higher bound of confidence interval is:

p^+E=0.96+0.0356=0.9956

Rounding off which to the 3rd decimal place gives 0.996, which converted into percentage gives 99.5%.

Thus, confidence interval is:

(92.4,99.5).

Conclusion:

A 99% confidence interval for the percentage of all computer chips from that factory that are not defective is (92.4,99.5), which means that with 99% confidence, the percentage of all computer chips from that factory that are not defective is between 92.4% and 99.5%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 8 Solutions

Beginning Statistics, 2nd Edition

Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.CR - Prob. 1CRCh. 8.CR - Prob. 2CRCh. 8.CR - Prob. 3CRCh. 8.CR - Prob. 4CRCh. 8.CR - Prob. 5CRCh. 8.CR - Prob. 6CRCh. 8.CR - Prob. 7CRCh. 8.CR - Prob. 8CRCh. 8.CR - Prob. 9CRCh. 8.CR - Prob. 10CRCh. 8.CR - Prob. 11CRCh. 8.CR - Prob. 12CRCh. 8.CR - Prob. 13CRCh. 8.PA - Prob. 1PCh. 8.PA - Prob. 2PCh. 8.PA - Prob. 3PCh. 8.PA - Prob. 4PCh. 8.PA - Prob. 5PCh. 8.PB - Prob. 1PCh. 8.PB - Prob. 2PCh. 8.PB - Prob. 3PCh. 8.PB - Prob. 4PCh. 8.PB - Prob. 5P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman