Beginning Statistics, 2nd Edition
Beginning Statistics, 2nd Edition
2nd Edition
ISBN: 9781932628678
Author: Carolyn Warren; Kimberly Denley; Emily Atchley
Publisher: Hawkes Learning Systems
Question
Book Icon
Chapter 8.3, Problem 14E
To determine

To find:

A 99% confidence interval for the mean

Expert Solution & Answer
Check Mark

Answer to Problem 14E

Solution:

A 99% confidence interval for the mean face amount of an individual life insurance policy is in the interval, (165852.02,177665.22).

Explanation of Solution

Approach:

Given a sample with standard deviation s, while estimating a population parameter, it is better to consider a range of values using samples of the same size (say n), also known as an interval estimate.

The true population parameters probability lies in this interval range which is known as the confidence level (c=1α).

At a certain level of confidence, the interval in which the maximum error can be observed is known as the confidence interval.

Estimating parameters of a large population or a population following normal distribution is done using the Student’s t-distribution to calculate the margin of error for mean of the population when its standard deviation is not known.

The t-distribution is described by only one measure that is the degrees of freedom, with the area under the tails decreasing with higher degrees of freedom, eventually matching the standard normal distribution when degrees of freedom is infinitely many.

The degrees of freedom is the attribute used to obtain the appropriate curve for the t-distribution.

Beginning Statistics, 2nd Edition, Chapter 8.3, Problem 14E

The value of t such that there is an area of α2 to the left of t and an area of α2 to the right of t is denoted by tα2 as depicted above.

Hence this is a case of two-tailed t-distribution.

The maximum distance from point estimate that the confidence interval covers is margin of error and is given by:

E=tα2×sn,

Given the sample mean (x¯), the population mean confidence interval is calculated as:

(x¯E,x¯+E).

Calculation:

The sample means is given by:

x¯=i=1nXin1

Substituting the values of life insurance policies in the formula above

x¯=(150000+150000+1500000+1500000+1500000+150000+151000+152000+152000+153000+153000+154000+155000+158000+159000+159000+160000+160000+160000+162000+163000+163000+163000+163000+165000+165000+168000+168000+168000+171000+171000+172000+172000+172000+173000+174000+175000+175000+175000+176000+182000+182000+183000+185000+185000+190000+190000+195000+195000+195000+196000+200000+200000+200000+200000+202000+202000)58=996200058x¯=171758.62

xi x- xi-x (xi-x)2
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
151, 000 171758.62 -20, 758.62 430920304.3
152, 000 171758.62 -19, 758.62 390403064.3
152, 000 171758.62 -19, 758.62 390403064.3
153, 000 171758.62 -18, 758.62 351885824.3
153, 000 171758.62 -18, 758.62 351885824.3
154, 000 171758.62 -17, 758.62 315368584.3
155, 000 171758.62 -16, 758.62 280851344.3
158, 000 171758.62 -13, 758.62 189299624.3
158, 000 171758.62 -12, 758.62 162782384.3
158, 000 171758.62 -12, 758.62 162782384.3
160, 000 171758.62 -11, 758.62 138265144.3
160, 000 171758.62 -11, 758.62 138265144.3
160, 000 171758.62 -11, 758.62 138265144.3
162, 000 171758.62 -9, 758.62 95230664.3
163, 000 171758.62 -8, 758.62 76713424.3
163, 000 171758.62 -8, 758.62 76713424.3
163, 000 171758.62 -8, 758.62 76713424.3
165, 000 171758.62 -6, 758.62 45678944.3
165, 000 171758.62 -6, 758.62 45678944.3
168, 000 171758.62 -3, 758.62 14127224.3
168, 000 171758.62 -3, 758.62 14127224.3
168, 000 171758.62 -3, 758.62 14127224.3
171, 000 171758.62 -758.62 575504.3044
171, 000 171758.62 -758.62 575504.3044
172, 000 171758.62 241.38 58264.3044
172, 000 171758.62 241.38 58264.3044
172, 000 171758.62 241.38 58264.3044
173, 000 171758.62 1, 241.38 1541024.304
174, 000 171758.62 2, 241.38 5023784.304
175, 000 171758.62 3, 241.38 10506544.3
175, 000 171758.62 3, 241.38 10506544.3
175, 000 171758.62 3, 241.38 10506544.3
176, 000 171758.62 4, 241.38 17989304.3
182, 000 171758.62 10, 241.38 104885864.3
182, 000 171758.62 10, 241.38 104885864.3
183, 000 171758.62 11, 241.38 126368624.3
185, 000 171758.62 13, 241.38 175334144.3
185, 000 171758.62 13, 241.38 175334144.3
190, 000 171758.62 18, 241.38 332747944.3
190, 000 171758.62 18, 241.38 332747944.3
195, 000 171758.62 23, 241.38 540161744.3
195, 000 171758.62 23, 241.38 540161744.3
195, 000 171758.62 23, 241.38 540161744.3
196, 000 171758.62 24, 241.38 587644504.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
202, 000 171758.62 30, 241.38 914541064.3
202, 000 171758.62 30, 241.38 914541064.3
163, 000 171758.62 -8, 758.62 76713424.3

Form the above table we get,

i=1n(xix¯)2=16252620690

Now the standard division is,

S=i=1n(xix¯)2n1S=1625262069057S=16885.9

Level of confidence is 99%

c=0.99

Where α2 is calculated as:

α2=(1c)2=(10.99)2=0.005

Critical t value at α2=0.005 using t table and degree of freedom as (581=57) is 2.664.

Now substitute these values in margin of error.

Then, the margin of error is calculated as:

E=tα2×sn=2.664×16885.958=5906.69

Then, interval is:

(x¯E,x¯+E)=(171758.625906.69,171758.62+5906.69)(165852.02,177665.22)

Conclusion:

A 95% confidence interval for the mean fastball pitching speed of all high school is in the interval (165852.02,177665.22).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…
Problem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…
The scores of 8 students on the midterm exam and final exam were as follows.   Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91   Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =

Chapter 8 Solutions

Beginning Statistics, 2nd Edition

Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.CR - Prob. 1CRCh. 8.CR - Prob. 2CRCh. 8.CR - Prob. 3CRCh. 8.CR - Prob. 4CRCh. 8.CR - Prob. 5CRCh. 8.CR - Prob. 6CRCh. 8.CR - Prob. 7CRCh. 8.CR - Prob. 8CRCh. 8.CR - Prob. 9CRCh. 8.CR - Prob. 10CRCh. 8.CR - Prob. 11CRCh. 8.CR - Prob. 12CRCh. 8.CR - Prob. 13CRCh. 8.PA - Prob. 1PCh. 8.PA - Prob. 2PCh. 8.PA - Prob. 3PCh. 8.PA - Prob. 4PCh. 8.PA - Prob. 5PCh. 8.PB - Prob. 1PCh. 8.PB - Prob. 2PCh. 8.PB - Prob. 3PCh. 8.PB - Prob. 4PCh. 8.PB - Prob. 5P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman