INTRO.+INTERMED.ALG.F/COLL....-ACCESS
6th Edition
ISBN: 9780136679219
Author: Blitzer
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.3, Problem 63ES
(a)
To determine
To calculate: The function that shows the gap between the provided functions.
(b)
To determine
To calculate: The find the extra count of women in comparison of men.
(c)
To determine
To calculate: The count obtained in part (b) of the question is representing the correct count for difference between population of men and women in comparison to provided graph or it is underestimating or overestimating the count.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
I need diagram with solutions
T. Determine the least common
denominator and the domain for the
2x-3
10
problem:
+
x²+6x+8
x²+x-12
3
2x
2. Add:
+
Simplify and
5x+10 x²-2x-8
state the domain.
7
3. Add/Subtract:
x+2 1
+
x+6
2x+2 4
Simplify and state the domain.
x+1
4
4. Subtract:
-
Simplify
3x-3
x²-3x+2
and state the domain.
1
15
3x-5
5. Add/Subtract:
+
2
2x-14
x²-7x
Simplify and state the domain.
Chapter 8 Solutions
INTRO.+INTERMED.ALG.F/COLL....-ACCESS
Ch. 8.1 - Fill in each blank so that the resulting statement...Ch. 8.1 - Prob. 2CAVCCh. 8.1 - Prob. 3CAVCCh. 8.1 - Prob. 4CAVCCh. 8.1 - Prob. 1ESCh. 8.1 - Prob. 2ESCh. 8.1 - Prob. 3ESCh. 8.1 - Prob. 4ESCh. 8.1 - Prob. 5ESCh. 8.1 - Prob. 6ES
Ch. 8.1 - Prob. 7ESCh. 8.1 - Prob. 8ESCh. 8.1 - Prob. 9ESCh. 8.1 - Prob. 10ESCh. 8.1 - Prob. 11ESCh. 8.1 - Prob. 12ESCh. 8.1 - Prob. 13ESCh. 8.1 - Prob. 14ESCh. 8.1 - Prob. 15ESCh. 8.1 - Prob. 16ESCh. 8.1 - Prob. 17ESCh. 8.1 - In Exercises 9–24, find the indicated function...Ch. 8.1 - Prob. 19ESCh. 8.1 - Prob. 20ESCh. 8.1 - Prob. 21ESCh. 8.1 - Prob. 22ESCh. 8.1 - Prob. 23ESCh. 8.1 - Prob. 24ESCh. 8.1 - Prob. 25ESCh. 8.1 - Prob. 26ESCh. 8.1 - Prob. 27ESCh. 8.1 - Prob. 28ESCh. 8.1 - Prob. 29ESCh. 8.1 - Prob. 30ESCh. 8.1 - Prob. 31ESCh. 8.1 - Prob. 32ESCh. 8.1 - Prob. 33ESCh. 8.1 - Prob. 34ESCh. 8.1 - Prob. 35ESCh. 8.1 - Prob. 36ESCh. 8.1 - Prob. 37ESCh. 8.1 - For people filing a single return, federal income...Ch. 8.1 - Prob. 39ESCh. 8.1 - Prob. 40ESCh. 8.1 - Prob. 41ESCh. 8.1 - Prob. 42ESCh. 8.1 - Prob. 43ESCh. 8.1 - Prob. 44ESCh. 8.1 - Prob. 45ESCh. 8.1 - Prob. 46ESCh. 8.1 - Prob. 47ESCh. 8.1 - Prob. 48ESCh. 8.1 - Prob. 49ESCh. 8.1 - Prob. 50ESCh. 8.1 - Prob. 51ESCh. 8.1 - Prob. 52ESCh. 8.1 - Prob. 53ESCh. 8.1 - Prob. 54ESCh. 8.1 - Prob. 55ESCh. 8.1 - Prob. 56ESCh. 8.1 - Prob. 57ESCh. 8.2 - Prob. 1CAVCCh. 8.2 - Prob. 2CAVCCh. 8.2 - Prob. 3CAVCCh. 8.2 - Prob. 4CAVCCh. 8.2 - Prob. 1ESCh. 8.2 - Prob. 2ESCh. 8.2 - Prob. 3ESCh. 8.2 - Prob. 4ESCh. 8.2 - Prob. 5ESCh. 8.2 - Prob. 6ESCh. 8.2 - Prob. 7ESCh. 8.2 - Prob. 8ESCh. 8.2 - Prob. 9ESCh. 8.2 - Prob. 10ESCh. 8.2 - Prob. 11ESCh. 8.2 - Prob. 12ESCh. 8.2 - Prob. 13ESCh. 8.2 - Prob. 14ESCh. 8.2 - Prob. 15ESCh. 8.2 - Prob. 16ESCh. 8.2 - Prob. 17ESCh. 8.2 - Prob. 18ESCh. 8.2 - Prob. 19ESCh. 8.2 - Prob. 20ESCh. 8.2 - Prob. 21ESCh. 8.2 - Prob. 22ESCh. 8.2 - Prob. 23ESCh. 8.2 - Prob. 24ESCh. 8.2 - Prob. 25ESCh. 8.2 - Prob. 26ESCh. 8.2 - Prob. 27ESCh. 8.2 - Prob. 28ESCh. 8.2 - Prob. 29ESCh. 8.2 - Prob. 30ESCh. 8.2 - Prob. 31ESCh. 8.2 - Prob. 32ESCh. 8.2 - Prob. 33ESCh. 8.2 - Prob. 34ESCh. 8.2 - Prob. 35ESCh. 8.2 - Prob. 36ESCh. 8.2 - In Exercises 3544, use the graph of each function...Ch. 8.2 - Prob. 38ESCh. 8.2 - Prob. 39ESCh. 8.2 - Prob. 40ESCh. 8.2 - Prob. 41ESCh. 8.2 - Prob. 42ESCh. 8.2 - Prob. 43ESCh. 8.2 - Prob. 44ESCh. 8.2 - Prob. 45ESCh. 8.2 - Prob. 46ESCh. 8.2 - Prob. 47ESCh. 8.2 - Prob. 48ESCh. 8.2 - Prob. 49ESCh. 8.2 - Prob. 50ESCh. 8.2 - The functionfx=0.4x236x+1000models the number of...Ch. 8.2 - Prob. 52ESCh. 8.2 - Prob. 53ESCh. 8.2 - Prob. 54ESCh. 8.2 - Prob. 55ESCh. 8.2 - Prob. 56ESCh. 8.2 - Prob. 57ESCh. 8.2 - Prob. 58ESCh. 8.2 - Prob. 59ESCh. 8.2 - Prob. 60ESCh. 8.2 - Prob. 61ESCh. 8.2 - Prob. 62ESCh. 8.2 - Prob. 63ESCh. 8.2 - Prob. 64ESCh. 8.2 - Prob. 65ESCh. 8.2 - Prob. 66ESCh. 8.2 - Prob. 67ESCh. 8.2 - Prob. 68ESCh. 8.2 - Prob. 69ESCh. 8.2 - Prob. 70ESCh. 8.2 - Prob. 71ESCh. 8.2 - Prob. 72ESCh. 8.2 - Prob. 73ESCh. 8.2 - Prob. 74ESCh. 8.2 - Prob. 75ESCh. 8.2 - Prob. 76ESCh. 8.2 - Prob. 77ESCh. 8.2 - Prob. 78ESCh. 8.2 - Prob. 79ESCh. 8.2 - Prob. 80ESCh. 8.3 - Prob. 1CAVCCh. 8.3 - Prob. 2CAVCCh. 8.3 - Prob. 3CAVCCh. 8.3 - Prob. 4CAVCCh. 8.3 - Prob. 5CAVCCh. 8.3 - Prob. 6CAVCCh. 8.3 - Prob. 7CAVCCh. 8.3 - Prob. 8CAVCCh. 8.3 - Prob. 9CAVCCh. 8.3 - Prob. 1ESCh. 8.3 - Prob. 2ESCh. 8.3 - Prob. 3ESCh. 8.3 - Prob. 4ESCh. 8.3 - Prob. 5ESCh. 8.3 - Prob. 6ESCh. 8.3 - Prob. 7ESCh. 8.3 - Prob. 8ESCh. 8.3 - Prob. 9ESCh. 8.3 - Prob. 10ESCh. 8.3 - Prob. 11ESCh. 8.3 - Prob. 12ESCh. 8.3 - Prob. 13ESCh. 8.3 - Prob. 14ESCh. 8.3 - Prob. 15ESCh. 8.3 - Prob. 16ESCh. 8.3 - Prob. 17ESCh. 8.3 - Prob. 18ESCh. 8.3 - Prob. 19ESCh. 8.3 - Prob. 20ESCh. 8.3 - Prob. 21ESCh. 8.3 - Prob. 22ESCh. 8.3 - Prob. 23ESCh. 8.3 - Prob. 24ESCh. 8.3 - Prob. 25ESCh. 8.3 - Prob. 26ESCh. 8.3 - Prob. 27ESCh. 8.3 - Prob. 28ESCh. 8.3 - Prob. 29ESCh. 8.3 - Prob. 30ESCh. 8.3 - Prob. 31ESCh. 8.3 - Prob. 32ESCh. 8.3 - Prob. 33ESCh. 8.3 - Prob. 34ESCh. 8.3 - Prob. 35ESCh. 8.3 - Prob. 36ESCh. 8.3 - Prob. 37ESCh. 8.3 - Prob. 38ESCh. 8.3 - Prob. 39ESCh. 8.3 - Prob. 40ESCh. 8.3 - Prob. 41ESCh. 8.3 - Prob. 42ESCh. 8.3 - Prob. 43ESCh. 8.3 - Prob. 44ESCh. 8.3 - Prob. 45ESCh. 8.3 - Prob. 46ESCh. 8.3 - Prob. 47ESCh. 8.3 - Prob. 48ESCh. 8.3 - Prob. 49ESCh. 8.3 - Prob. 50ESCh. 8.3 - Prob. 51ESCh. 8.3 - Prob. 52ESCh. 8.3 - Prob. 53ESCh. 8.3 - Prob. 54ESCh. 8.3 - Prob. 55ESCh. 8.3 - Prob. 56ESCh. 8.3 - Prob. 57ESCh. 8.3 - Prob. 58ESCh. 8.3 - Prob. 59ESCh. 8.3 - Prob. 60ESCh. 8.3 - Prob. 61ESCh. 8.3 - Prob. 62ESCh. 8.3 - Prob. 63ESCh. 8.3 - Prob. 64ESCh. 8.3 - Prob. 65ESCh. 8.3 - Prob. 66ESCh. 8.3 - Prob. 67ESCh. 8.3 - Prob. 68ESCh. 8.3 - Prob. 69ESCh. 8.3 - Prob. 70ESCh. 8.3 - Prob. 71ESCh. 8.3 - Prob. 72ESCh. 8.3 - Prob. 73ESCh. 8.3 - Prob. 74ESCh. 8.3 - Prob. 75ESCh. 8.3 - Prob. 76ESCh. 8.3 - Prob. 77ESCh. 8.3 - Prob. 78ESCh. 8.3 - Prob. 79ESCh. 8.3 - Prob. 80ESCh. 8.3 - Prob. 81ESCh. 8.3 - Prob. 82ESCh. 8.3 - Prob. 83ESCh. 8.3 - Prob. 84ESCh. 8.3 - Prob. 85ESCh. 8.3 - Prob. 86ESCh. 8.3 - Prob. 87ESCh. 8.3 - Prob. 88ESCh. 8.3 - Prob. 89ESCh. 8.4 - Prob. 1CAVCCh. 8.4 - Prob. 2CAVCCh. 8.4 - Prob. 3CAVCCh. 8.4 - Prob. 4CAVCCh. 8.4 - Prob. 5CAVCCh. 8.4 - Prob. 6CAVCCh. 8.4 - Prob. 7CAVCCh. 8.4 - Prob. 8CAVCCh. 8.4 - Prob. 9CAVCCh. 8.4 - Prob. 10CAVCCh. 8.4 - Prob. 1ESCh. 8.4 - Prob. 2ESCh. 8.4 - Prob. 3ESCh. 8.4 - Prob. 4ESCh. 8.4 - Prob. 5ESCh. 8.4 - Prob. 6ESCh. 8.4 - Prob. 7ESCh. 8.4 - Prob. 8ESCh. 8.4 - Prob. 9ESCh. 8.4 - Prob. 10ESCh. 8.4 - Prob. 11ESCh. 8.4 - Prob. 12ESCh. 8.4 - Prob. 13ESCh. 8.4 - Prob. 14ESCh. 8.4 - Prob. 15ESCh. 8.4 - Prob. 16ESCh. 8.4 - Prob. 17ESCh. 8.4 - Prob. 18ESCh. 8.4 - Prob. 19ESCh. 8.4 - Prob. 20ESCh. 8.4 - Prob. 21ESCh. 8.4 - Prob. 22ESCh. 8.4 - Prob. 23ESCh. 8.4 - Prob. 24ESCh. 8.4 - Prob. 25ESCh. 8.4 - Prob. 26ESCh. 8.4 - Prob. 27ESCh. 8.4 - Prob. 28ESCh. 8.4 - Prob. 29ESCh. 8.4 - Prob. 30ESCh. 8.4 - The function in Exercises 2534 are all on-to-one....Ch. 8.4 - Prob. 32ESCh. 8.4 - Prob. 33ESCh. 8.4 - Prob. 34ESCh. 8.4 - Prob. 35ESCh. 8.4 - Prob. 36ESCh. 8.4 - Prob. 37ESCh. 8.4 - Prob. 38ESCh. 8.4 - Prob. 39ESCh. 8.4 - Prob. 40ESCh. 8.4 - Prob. 41ESCh. 8.4 - Prob. 42ESCh. 8.4 - Prob. 43ESCh. 8.4 - Prob. 44ESCh. 8.4 - Prob. 45ESCh. 8.4 - Prob. 46ESCh. 8.4 - Prob. 47ESCh. 8.4 - Prob. 48ESCh. 8.4 - Prob. 49ESCh. 8.4 - Prob. 50ESCh. 8.4 - Prob. 51ESCh. 8.4 - Prob. 52ESCh. 8.4 - Prob. 53ESCh. 8.4 - Prob. 54ESCh. 8.4 - Prob. 55ESCh. 8.4 - Prob. 56ESCh. 8.4 - Prob. 57ESCh. 8.4 - Prob. 58ESCh. 8.4 - Prob. 59ESCh. 8.4 - Prob. 60ESCh. 8.4 - Prob. 61ESCh. 8.4 - Prob. 62ESCh. 8.4 - Prob. 63ESCh. 8.4 - Prob. 64ESCh. 8.4 - Prob. 65ESCh. 8.4 - Prob. 66ESCh. 8.4 - Prob. 67ESCh. 8.4 - Prob. 68ESCh. 8.4 - Prob. 69ESCh. 8.4 - Prob. 70ESCh. 8.4 - Prob. 71ESCh. 8.4 - Prob. 72ESCh. 8.4 - Prob. 73ESCh. 8.4 - Prob. 74ESCh. 8.4 - Prob. 75ESCh. 8.4 - Prob. 76ESCh. 8.4 - Prob. 77ESCh. 8.4 - Prob. 78ESCh. 8.4 - Prob. 79ESCh. 8.4 - Prob. 80ESCh. 8.4 - Prob. 81ESCh. 8.4 - Prob. 82ESCh. 8.4 - Prob. 83ESCh. 8.4 - Prob. 84ESCh. 8.4 - Prob. 85ESCh. 8.4 - Prob. 86ESCh. 8.4 - Prob. 87ESCh. 8.4 - Prob. 88ESCh. 8.4 - Prob. 89ESCh. 8.4 - Prob. 90ESCh. 8.4 - Prob. 91ESCh. 8.4 - Prob. 92ESCh. 8.4 - Prob. 93ESCh. 8.4 - Prob. 94ESCh. 8.4 - Prob. 95ESCh. 8.4 - Prob. 96ESCh. 8.4 - Prob. 97ESCh. 8.4 - Prob. 98ESCh. 8.4 - Prob. 99ESCh. 8.4 - Prob. 100ESCh. 8.4 - Prob. 101ESCh. 8 - Prob. 1MCPCh. 8 - Prob. 2MCPCh. 8 - Prob. 3MCPCh. 8 - Prob. 4MCPCh. 8 - Prob. 5MCPCh. 8 - Prob. 6MCPCh. 8 - Prob. 7MCPCh. 8 - Prob. 8MCPCh. 8 - Prob. 9MCPCh. 8 - Prob. 10MCPCh. 8 - Prob. 11MCPCh. 8 - Prob. 12MCPCh. 8 - Prob. 13MCPCh. 8 - Prob. 14MCPCh. 8 - Prob. 15MCPCh. 8 - Prob. 16MCPCh. 8 - Prob. 17MCPCh. 8 - Prob. 18MCPCh. 8 - Prob. 19MCPCh. 8 - Prob. 20MCPCh. 8 - Prob. 21MCPCh. 8 - Prob. 22MCPCh. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 24RECh. 8 - Prob. 25RECh. 8 - Prob. 26RECh. 8 - Prob. 27RECh. 8 - Prob. 28RECh. 8 - Prob. 29RECh. 8 - Prob. 30RECh. 8 - Prob. 31RECh. 8 - Prob. 32RECh. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RECh. 8 - Prob. 36RECh. 8 - Prob. 37RECh. 8 - Prob. 38RECh. 8 - Prob. 39RECh. 8 - Prob. 40RECh. 8 - Prob. 41RECh. 8 - Prob. 42RECh. 8 - Prob. 43RECh. 8 - Prob. 44RECh. 8 - Prob. 45RECh. 8 - Prob. 46RECh. 8 - Prob. 1TCh. 8 - Prob. 2TCh. 8 - Prob. 3TCh. 8 - Prob. 4TCh. 8 - Prob. 5TCh. 8 - Prob. 6TCh. 8 - Prob. 7TCh. 8 - Prob. 8TCh. 8 - Prob. 9TCh. 8 - Prob. 10TCh. 8 - Prob. 11TCh. 8 - Prob. 12TCh. 8 - Prob. 13TCh. 8 - Prob. 14TCh. 8 - Prob. 15TCh. 8 - Prob. 16TCh. 8 - Prob. 17TCh. 8 - Prob. 18TCh. 8 - Prob. 19TCh. 8 - Prob. 1CRECh. 8 - In Exercises 16, solve each equation or system of...Ch. 8 - Prob. 3CRECh. 8 - Prob. 4CRECh. 8 - Prob. 5CRECh. 8 - Prob. 6CRECh. 8 - Prob. 7CRECh. 8 - Prob. 8CRECh. 8 - Prob. 9CRECh. 8 - Prob. 10CRECh. 8 - Prob. 11CRECh. 8 - Prob. 12CRECh. 8 - Prob. 13CRECh. 8 - Prob. 14CRECh. 8 - Prob. 15CRECh. 8 - Prob. 16CRECh. 8 - Prob. 17CRECh. 8 - Prob. 18CRECh. 8 - Prob. 19CRECh. 8 - Prob. 20CRECh. 8 - Prob. 21CRECh. 8 - Prob. 22CRECh. 8 - Prob. 23CRECh. 8 - Prob. 24CRECh. 8 - Prob. 25CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Q.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY