Concept explainers
Wilson’s interval: The small-sample method for constructing a confidence interval is a simple, approximation of a more complicated interval known as Wilson’s interval. Let
Wilson’s confidence interval for p is given by
Approximation depends on the level: The small-sample method is a good approximation to Wilson’s method for all confidence levels commonly used in practice, but is best when is close to 2. Refer to Exercise 41.
- Use Wilson’s method to construct a 90% confidence interval, a 95% confidence interval, and a 99% confidence Interval for the proportion of tenth graders who plan to attend college.
- Use the small-sample method to construct a 90% confidence interval, a 95% confidence interval, and a 99% confidence interval for the proportion of tenth graders who plan to attend college.
- For which level is the small-sample method the closest to Wilson’s method? Explain why this is the case.
(a)
Use Wilson’s method to construct the confidence interval.
Answer to Problem 43E
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Explanation of Solution
The Wilson’s method formula is given,
Here, p is the probability value and z are critical value
Then compute the Wilson’s confidence interval method
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Program:
clc clear close all n=15; x=9; p=9/15; z1=1.645; z2=1.96; z3=2.575; up90=p+(z1/(2*n))+z1*sqrt((p*(1-p)/n)+((z1)^2/(4*n^2))); up95=p+(z2/(2*n))+z2*sqrt((p*(1-p)/n)+((z2)^2/(4*n^2))); up99=p+(z3/(2*n))+z3*sqrt((p*(1-p)/n)+((z3)^2/(4*n^2))); div90=1+(z1^2/n); div95=1+(z2^2/n); div99=1+(z3^2/n); w90p=up90/div90 w95p=up95/div95 w99p=up99/div99 low90=p+(z1/(2*n))-z1*sqrt((p*(1-p)/n)+((z1)^2/(4*n^2))); low95=p+(z2/(2*n))-z2*sqrt((p*(1-p)/n)+((z2)^2/(4*n^2))); low99=p+(z3/(2*n))-z3*sqrt((p*(1-p)/n)+((z3)^2/(4*n^2))); w90n=low90/div90 w95n=low95/div95 w99n=low99/div99
(b)
Using small-sample method to construct the confidence interval.
Answer to Problem 43E
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Explanation of Solution
The small-sample method formula is given,
Here, p is the probability value and z are critical value
Then compute the Wilson’s confidence interval method
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Program:
clc clear close all n=15; x=9; p=9/15; z1=1.645; z2=1.96; z3=2.575; up90=p+z1*sqrt((p*(1-p)/(n+4))) up95=p+z2*sqrt((p*(1-p)/(n+4))) up99=p+z3*sqrt((p*(1-p)/(n+4))) low90=p-z1*sqrt((p*(1-p)/(n+4))) low95=p-z2*sqrt((p*(1-p)/(n+4))) low99=p-z3*sqrt((p*(1-p)/(n+4)))
(c)
Explain at which interval Wilson’s method close to small-sample method.
Answer to Problem 43E
At the 90 % interval Wilson’s method close to small-sample method.
The Wilson’s method shows
At 90% confidence interval the probability value is
The Small-sample method shows
At 90% confidence interval the probability value is
Explanation of Solution
Wilson’s method formula
The small-sample formula
Want to see more full solutions like this?
Chapter 8 Solutions
Connect Hosted by ALEKS Online Access for Elementary Statistics
- (b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward29. State the Borel-Cantelli Lemmas without proof. What is the primary distinction between Lemma 1 and Lemma 2?arrow_forward
- The masses measured on a population of 100 animals were grouped in the following table, after being recorded to the nearest gram Mass 89 90-109 110-129 130-149 150-169 170-189 > 190 Frequency 3 7 34 43 10 2 1 You are given that the sample mean of the data is 131.5 and the sample standard deviation is 20.0. Test the hypothesis that the distribution of masses follows a normal distribution at the 5% significance level.arrow_forwardstate without proof the uniqueness theorm of probability functionarrow_forward(a+b) R2L 2+2*0=? Ma state without proof the uniqueness theorm of probability function suppose thatPandQ are probability measures defined on the same probability space (Q, F)and that Fis generated by a π-system if P(A)=Q(A) tax for all A EthenP=Q i. e. P(A)=Q(A) for alla g // معدلة 2:23 صarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman