Pearson eText for Calculus for Business, Economics, Life Sciences, and Social Sciences -- Instant Access (Pearson+)
14th Edition
ISBN: 9780137554805
Author: Raymond Barnett, Michael Ziegler
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.3, Problem 39E
In Problems 39 and 40, find f″(x).
39. f(x) = ex sin x
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
60!
5!.7!.15!.33!
•
•
Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of
sin((-1.63, 2.06, 0.57) – (0,0,0)) is
-
0.336
-0.931
-0.587
0.440
0.902
0.607
-0.609
0.146
The value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at
x = 1, y = 1/4, z = 1/3 is
0.602
-0.323
0.712
-0.816
0.781
0.102
0.075
0.013
Chapter 8 Solutions
Pearson eText for Calculus for Business, Economics, Life Sciences, and Social Sciences -- Instant Access (Pearson+)
Ch. 8.1 - Find the degree measure of 1 rad.Ch. 8.1 - Without using a calculator, find: (A)cot 45 (B)cos...Ch. 8.1 - Solve the right triangle in Figure 14. Round side...Ch. 8.1 - Solve the right triangle in Figure 16. Round...Ch. 8.1 - Repeat Example 5 assuming that the man is standing...Ch. 8.1 - Prob. 1EDCh. 8.1 - Prob. 1ECh. 8.1 - In Problems 18, mentally convert each degree...Ch. 8.1 - In Problems 18, mentally convert each degree...Ch. 8.1 - In Problems 18, mentally convert each degree...
Ch. 8.1 - In Problems 18, mentally convert each degree...Ch. 8.1 - In Problems 18, mentally convert each degree...Ch. 8.1 - In Problems 18, mentally convert each degree...Ch. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Prob. 10ECh. 8.1 - In Problems 916, find the trigonometric ratio by...Ch. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - In Problems 916, find the trigonometric ratio by...Ch. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - In Problems 1724, find the exact value without...Ch. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - In Problems 1724, find the exact value without...Ch. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - In Problems 2536, use a calculator set in degree...Ch. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - In Problems 2536, use a calculator set in degree...Ch. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - In Problems 2536, use a calculator set in degree...Ch. 8.1 - Prob. 36ECh. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - In Problems 3742, use a calculator to find the...Ch. 8.1 - Prob. 40ECh. 8.1 - In Problems 3742, use a calculator to find the...Ch. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - Prob. 49ECh. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Digital display. An 8-foot-tall digital display...Ch. 8.1 - Prob. 54ECh. 8.1 - Prob. 55ECh. 8.1 - Prob. 56ECh. 8.1 - An angle above the horizontal is called an angle...Ch. 8.1 - An angle above the horizontal is called an angle...Ch. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.2 - Referring to Figure 2, find (A) sin 180(B)...Ch. 8.2 - Find the exact values without using a calculator....Ch. 8.2 - Find the exact values without using a calculator....Ch. 8.2 - Refer to Example 4. (A)Find the exact value of...Ch. 8.2 - Prob. 1EDCh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - In Problems 18, find the exact value of each...Ch. 8.2 - Prob. 4ECh. 8.2 - In Problems 18, find the exact value of each...Ch. 8.2 - Prob. 6ECh. 8.2 - In Problems 18, find the exact value of each...Ch. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - In Problems 924, find the exact value of each...Ch. 8.2 - In Problems 924, find the exact value of each...Ch. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - In Problems 924, find the exact value of each...Ch. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - In Problems 924, find the exact value of each...Ch. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - Prob. 30ECh. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - Prob. 33ECh. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - Prob. 39ECh. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 27-42, find the exact value of each...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - Prob. 48ECh. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - Prob. 50ECh. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 4354, use a calculator in radian or...Ch. 8.2 - In Problems 5558, use a graphing calculator set in...Ch. 8.2 - In Problems 5558, use a graphing calculator set in...Ch. 8.2 - In Problems 5558, use a graphing calculator set in...Ch. 8.2 - In Problems 5558, use a graphing calculator set in...Ch. 8.2 - Find the domain of the tangent function.Ch. 8.2 - Find the domain of the cotangent function.Ch. 8.2 - Find the domain of the secant function.Ch. 8.2 - Prob. 62ECh. 8.2 - Explain why the range of the cosecant function is...Ch. 8.2 - Explain why the range of the secant function is...Ch. 8.2 - Explain why the range of the cotangent function is...Ch. 8.2 - Explain why the range of the tangent function is...Ch. 8.2 - Seasonal business cycle. Suppose that profits on...Ch. 8.2 - Seasonal business cycle. Revenues from sales of a...Ch. 8.2 - Prob. 69ECh. 8.2 - Pollution. In a large city, the amount of sulfur...Ch. 8.2 - Prob. 71ECh. 8.3 - Find each of the following derivatives:...Ch. 8.3 - Find the slope of the graph of f(x) = cos x at...Ch. 8.3 - Find ddxcscx.Ch. 8.3 - Suppose that revenues from the sale of ski jackets...Ch. 8.3 - Prob. 1EDCh. 8.3 - In Problems 14, by inspecting a graph of y = sin x...Ch. 8.3 - In Problems 14, by inspecting a graph of y = sin x...Ch. 8.3 - In Problems 14, by inspecting a graph of y = sin x...Ch. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - In Problems 58, by inspecting a graph of y = sin x...Ch. 8.3 - In Problems 58, by inspecting a graph of y = sin x...Ch. 8.3 - In Problems 58, by inspecting a graph of y = sin x...Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Prob. 22ECh. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Find the indicated derivatives in Problems 926....Ch. 8.3 - Prob. 26ECh. 8.3 - Find the slope of the graph of f(x) = sin x at x =...Ch. 8.3 - Find the slope of the graph of f(x) = cos x at x =...Ch. 8.3 - Prob. 29ECh. 8.3 - From the graph of y = f'(x) on the next page,...Ch. 8.3 - Prob. 31ECh. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - Find the indicated derivatives in Problems 3138....Ch. 8.3 - In Problems 39 and 40, find f(x). 39.f(x) = ex sin...Ch. 8.3 - Prob. 40ECh. 8.3 - In Problems 4146, graph each function on a...Ch. 8.3 - In Problems 4146, graph each function on a...Ch. 8.3 - Prob. 43ECh. 8.3 - In Problems 4146, graph each function on a...Ch. 8.3 - In Problems 4146, graph each function on a...Ch. 8.3 - In Problems 4146, graph each function on a...Ch. 8.3 - Profit. Suppose that profits on the sale of...Ch. 8.3 - Revenue. Revenues from sales of a soft drink over...Ch. 8.3 - Physiology. A normal seated adult inhales and...Ch. 8.3 - Pollution. In a large city, the amount of sulfur...Ch. 8.4 - Find the area under the cosine curve y = cos x...Ch. 8.4 - Find cos20tdt.Ch. 8.4 - Find sinxcosxdx.Ch. 8.4 - Prob. 4MPCh. 8.4 - Suppose that revenues from the sale of ski jackets...Ch. 8.4 - Prob. 1ECh. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - In Problems 18, by using only the unit circle...Ch. 8.4 - Prob. 8ECh. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Prob. 13ECh. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Prob. 18ECh. 8.4 - Evaluate each of the definite integrals in...Ch. 8.4 - Evaluate each of the definite integrals in...Ch. 8.4 - Evaluate each of the definite integrals in...Ch. 8.4 - Evaluate each of the definite integrals in...Ch. 8.4 - Find the shaded area under the cosine curve in the...Ch. 8.4 - Find the shaded area under the sine curve in the...Ch. 8.4 - Use a calculator to evaluate the definite...Ch. 8.4 - Prob. 26ECh. 8.4 - Use a calculator to evaluate the definite...Ch. 8.4 - Prob. 28ECh. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Find each of the indefinite integrals in Problems...Ch. 8.4 - Given the definite integral I=03exsinxdx (A)Graph...Ch. 8.4 - Given the definite integral I=03excosxdx (A)Graph...Ch. 8.4 - Seasonal business cycle. Suppose that profits on...Ch. 8.4 - Seasonal business cycle. Revenues from sales of a...Ch. 8.4 - Pollution. In a large city, the amount of sulfur...Ch. 8 - Convert to radian measure in terms of : (A) 30(B)...Ch. 8 - Evaluate without using a calculator: (A) cos (B)...Ch. 8 - In Problems 36, find each derivative or integral....Ch. 8 - In Problems 36, find each derivative or integral....Ch. 8 - Prob. 5RECh. 8 - In Problems 36, find each derivative or integral....Ch. 8 - Convert to degree measure: (A) /6(B) /4(C) /3(D)...Ch. 8 - Evaluate without using a calculator: (A) sin6(B)...Ch. 8 - Evaluate with the use of a calculator: (A) cos...Ch. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - In Problems 1218, find each derivative or...Ch. 8 - In Problems 1218, find each derivative or...Ch. 8 - In Problems 1218, find each derivative or...Ch. 8 - Prob. 15RECh. 8 - In Problems 1218, find each derivative or...Ch. 8 - Prob. 17RECh. 8 - In Problems 1218, find each derivative or...Ch. 8 - Prob. 19RECh. 8 - Find the area under the sine curve y = sin x from...Ch. 8 - Given the definite integral I=15sinxxdx (A)Graph...Ch. 8 - Convert 15 to radian measure.Ch. 8 - Evaluate without using a calculator: (A) sin32 (B)...Ch. 8 - Prob. 24RECh. 8 - In Problems 2428, find each derivative or...Ch. 8 - In Problems 2428, find each derivative or...Ch. 8 - In Problems 2428, find each derivative or...Ch. 8 - In Problems 2428, find each derivative or...Ch. 8 - In Problems 2931, graph each function on a...Ch. 8 - In Problems 2931, graph each function on a...Ch. 8 - In Problems 2931, graph each function on a...Ch. 8 - Prob. 32RECh. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- There is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forwardA: Tan Latitude / Tan P A = Tan 04° 30'/ Tan 77° 50.3' A= 0.016960 803 S CA named opposite to latitude, except when hour angle between 090° and 270°) B: Tan Declination | Sin P B Tan 052° 42.1'/ Sin 77° 50.3' B = 1.34 2905601 SCB is alway named same as declination) C = A + B = 1.35 9866404 S CC correction, A+/- B: if A and B have same name - add, If different name- subtract) = Tan Azimuth 1/Ccx cos Latitude) Tan Azimuth = 0.737640253 Azimuth = S 36.4° E CAzimuth takes combined name of C correction and Hour Angle - If LHA is between 0° and 180°, it is named "west", if LHA is between 180° and 360° it is named "east" True Azimuth= 143.6° Compass Azimuth = 145.0° Compass Error = 1.4° West Variation 4.0 East Deviation: 5.4 Westarrow_forwardds 5. Find a solution to this initial value problem: 3t2, s(0) = 5. dt 6. Find a solution to this initial value problem: A' = 0.03A, A(0) = 100.arrow_forward
- 2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forward1) Show that the force response of a MDOF system with general damping can be written as: X liax) -Σ = ral iw-s, + {0} iw-s,arrow_forward3) Prove that in extracting real mode ø, from a complex measured mode o, by maximizing the function: maz | ቀÇቃ | ||.|| ||.||2 is equivalent to the solution obtained from the followings: max Real(e)||2arrow_forward
- Draw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. L1 (a) The line L₁ is tangent to the unit circle at the point 0.992 (b) The tangent line 4₁ has equation: y= 0.126 x +0.992 (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line L₂ has equation: y= 0.380 x + x × x)arrow_forwardThe cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec. Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy. 50 feet green ball 40 feet 9 cup ball path rough (a) The x-coordinate of the position where the ball enters the green will be (b) The ball will exit the green exactly seconds after it is hit. (c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q: smallest x-coordinate =…arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. P L1 L (a) The line L₁ is tangent to the unit circle at the point (b) The tangent line L₁ has equation: X + (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line 42 has equation: y= x + ).arrow_forward
- What is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY