Concept explainers
To express:
A hexadecimal number into a binary number.
Answer to Problem 30A
Binary number is 111100001110.1001110101012.
Explanation of Solution
Given information:
A hexadecimal numbers F0E.9D516.
Calculation:
Binary number system uses the number 2 as its base. Therefore, it has 2 symbols: The numbers are 0 and 1.
And a hexadecimal number system uses the number 16 as its base i.e., it has 16 symbols. The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E and F.
Binary numbers are represented as from hexadecimal number
Hexadecimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Decimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
Hexadecimal | 8 | 9 | A | B | C | D | E | F |
Decimal | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Binary | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Each hexadecimal digit consists of 4 binary digits.
For example, hexadecimal number 9 is equal to binary number 1001.
For converting hexadecimal number into binary number, write down the hexadecimal number and represent each hexadecimal digit by its binary digit from the table.
Then combine all the digits together.
Same process follows for integer as well as fractional part.
Hexadecimal digits are equal to the summation of 2n, where n = 0, 1, 2 and 3 (position from right)
For example, 9 = 23+20. In this example, 21 and 22are not there. So, at position 1 and 2, binary digit is zero, and at position 0 and 3, binary digit is one. Therefore, hexadecimal of binary 1001 is
1 0 0 1
↓ ↓ ↓ ↓
23222120
Want to see more full solutions like this?
Chapter 83 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- 2 +d, di, d2: R² XR² > R² defined as follow Q/ Let d₂ 2/ d((x+x), (2, 1)) = √(x-2)² + (x-wsc • d₁ ((x,y), (z, w)) = max {| x-z\, \y-w\} • d₂ ((x, y), (Z, W)) = 1x-21+ \y-w| 2 • show that ddi, d₂ are equivalent? އarrow_forwardNumerical anarrow_forward1. Prove the following arguments using the rules of inference. Do not make use of conditional proof. (а) а → (ЪЛс) ¬C ..¬a (b) (pVq) → →r יור (c) (c^h) → j ¬j h (d) s→ d t d -d ..8A-t (e) (pVg) (rv¬s) Лѕ קר .'arrow_forward
- 2. Consider the following argument: (a) Seabiscuit is a thoroughbred. Seabiscuit is very fast. Every very fast racehorse can win the race. .. Therefore, some thoroughbred racehorse can win the race. Let us define the following predicates, whose domain is racehorses: T(x) x is a thoroughbred F(x) x is very fast R(x) x can win the race : Write the above argument in logical symbols using these predicates. (b) Prove the argument using the rules of inference. Do not make use of conditional proof. (c) Rewrite the proof using full sentences, avoiding logical symbols. It does not need to mention the names of rules of inference, but a fellow CSE 16 student should be able to understand the logical reasoning.arrow_forwardFind the inverse of the matrix, or determine that the inverse does not exist for: € (b) 7 -12 240 1 1 1 (c) 2 3 2 2 17 036 205 20 (d) -1 1 2 1 T NO 1 0 -1 00 1 0 02 (e) 1 0 00 0 0 1 1arrow_forward4. Prove the following. Use full sentences. Equations in the middle of sentences are fine, but do not use logical symbols. (a) (b) (n+3)2 is odd for every even integer n. It is not the case that whenever n is an integer such that 9 | n² then 9 | n.arrow_forward
- 3. (a) (b) Prove the following logical argument using the rules of inference. Do not make use of conditional proof. Vx(J(x)O(x)) 3x(J(x) A¬S(x)) . ·.³x(O(x) ^ ¬S(x)) Rewrite the proof using full sentences, avoiding logical symbols. It does not need to mention the names of rules of inference, but a fellow CSE 16 student should be able to understand the logical reasoning.arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward16.4. Show that if z' is the principal value, then 1+e** z'dz = (1-i), 2 where is the upper semicircle from z = 1 to z = -1.arrow_forward
- L 16.8. For each of the following functions f, describe the domain of ana- lyticity and apply the Cauchy-Goursat Theorem to show that f(z)dz = 0, where is the circle |2|=1:1 (a). f(z) = 1 z 2 + 2x + 2 (b). f(z) = ze*. What about (c). f(z) = (2z-i)-2?arrow_forward16.3. Evaluate each of the following integrals where the path is an arbitrary contour between the limits of integrations (a). [1 ri/2 edz, (b). (b). La cos COS (2) d dz, (c). (z−3)³dz. 0arrow_forwardQ/ prove that:- If Vis a finite dimensional vector space, then this equivalence relation has only a single equivalence class.arrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning