Concept explainers
To express:
A binary number into a hexadecimal number.
Answer to Problem 17A
Hexadecimal number is C94B.92416.
Explanation of Solution
Given information:
A binary number 1100100101001011.10010010012.
Calculation:
Binary number system uses the number 2 as its base. Therefore, it has 2 symbols: The numbers are 0 and 1.
And a hexadecimal number system uses the number 16 as its base, i.e., it has 16 symbols. The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.
Binary numbers are represented as from hexadecimal number
Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
Decimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Hexadecimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Binary | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Decimal | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Hexadecimal | 8 | 9 | A | B | C | D | E | F |
Each hexadecimal digit consists of 4 binary digits.
For example, hexadecimal number 9 is equal to binary number 1001.
For converting integer part of binary number into hexadecimal number, write down the binary number and represent four binary digits from right by its hexadecimal digit from the table.
Then combine all the digits together.
For converting fractional part of binary number into hexadecimal number, write down the binary number and represent four binary digits from left by its hexadecimal digit from the table.
Then combine all the digits together.
Finally, hexadecimal number is combination of both integer and fractional part.
Hexadecimal digits are equal to the summation of 2n where n = 0, 1, 2 and 3 (position from right).
For example, 9 = 23+20. In this example, 21 and 22are not there. So, at position 1 and 2, binary digit is zero, and at position 0 and 3, binary digit is one. Therefore, hexadecimal of binary 1001 is
The hexadecimal number is equal to the summation of binary digits dn × 2n
Divide the binary number into block of four digits. If four digits are not there, then add additional zero in binary number. For example, 11 is written as 0011 and .11 is written as .1100.
Hexadecimal of binary number 1100100101001011.10010010012 is (Starting from right for integer part and starting from left for fractional part)
Want to see more full solutions like this?
Chapter 83 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- Find the inverse of the matrix, or determine that the inverse does not exist for: € (b) 7 -12 240 1 1 1 (c) 2 3 2 2 17 036 205 20 (d) -1 1 2 1 T NO 1 0 -1 00 1 0 02 (e) 1 0 00 0 0 1 1arrow_forward4. Prove the following. Use full sentences. Equations in the middle of sentences are fine, but do not use logical symbols. (a) (b) (n+3)2 is odd for every even integer n. It is not the case that whenever n is an integer such that 9 | n² then 9 | n.arrow_forward3. (a) (b) Prove the following logical argument using the rules of inference. Do not make use of conditional proof. Vx(J(x)O(x)) 3x(J(x) A¬S(x)) . ·.³x(O(x) ^ ¬S(x)) Rewrite the proof using full sentences, avoiding logical symbols. It does not need to mention the names of rules of inference, but a fellow CSE 16 student should be able to understand the logical reasoning.arrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward16.4. Show that if z' is the principal value, then 1+e** z'dz = (1-i), 2 where is the upper semicircle from z = 1 to z = -1.arrow_forwardL 16.8. For each of the following functions f, describe the domain of ana- lyticity and apply the Cauchy-Goursat Theorem to show that f(z)dz = 0, where is the circle |2|=1:1 (a). f(z) = 1 z 2 + 2x + 2 (b). f(z) = ze*. What about (c). f(z) = (2z-i)-2?arrow_forward
- 16.3. Evaluate each of the following integrals where the path is an arbitrary contour between the limits of integrations (a). [1 ri/2 edz, (b). (b). La cos COS (2) d dz, (c). (z−3)³dz. 0arrow_forwardQ/ prove that:- If Vis a finite dimensional vector space, then this equivalence relation has only a single equivalence class.arrow_forward/ prove that :- It is easy to check that equivalence of norms is an e quivalence relation on the set of all norms on V.arrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,