Linear Algebra and Its Applications (5th Edition)
5th Edition
ISBN: 9780321982384
Author: David C. Lay, Steven R. Lay, Judi J. McDonald
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.2, Problem 5E
To determine
Whether the set of points is affinely dependent.
To construct: an affinely dependence if that points are affinely dependent.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
I need diagram with solutions
Chapter 8 Solutions
Linear Algebra and Its Applications (5th Edition)
Ch. 8.1 - Plot the points v1=[10],v2=[12], v3=[31], and...Ch. 8.1 - In Exercises 14, write y as an affine combination...Ch. 8.1 - In Exercises 14, write y as an affine combination...Ch. 8.1 - In Exercises 14, write y as an affine combination...Ch. 8.1 - In Exercises 14, write y as an affine combination...Ch. 8.1 - Prob. 5ECh. 8.1 - Prob. 6ECh. 8.1 - Prob. 7ECh. 8.1 - Prob. 8ECh. 8.1 - Prob. 9E
Ch. 8.1 - Suppose that the solutions of an equation Ax = b...Ch. 8.1 - Prob. 11ECh. 8.1 - a. If S = {x}, then aff S is the empty set. b. A...Ch. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Choose a set S of three points such that aff S is...Ch. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.2 - Describe a fast way to determine when three points...Ch. 8.2 - Prob. 2PPCh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - In Exercises 9 and 10, mark each statement True or...Ch. 8.2 - a. If{v1,....,vp} is an affinely dependent set in...Ch. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - The conditions for affine dependence are stronger...Ch. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Let T be a tetrahedron in standard position, with...Ch. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - In Exercises 21-24, a, b, and c are noncollinear...Ch. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.3 - Prob. 1PPCh. 8.3 - Let S be the set of points on the curve y = 1/x...Ch. 8.3 - Prob. 1ECh. 8.3 - Describe the convex hull of the set S of points...Ch. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Repeat Exercise 9 for the points q1, , q5 whose...Ch. 8.3 - Prob. 11ECh. 8.3 - In Exercises 11 and 12, mark each statement True...Ch. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Let v1 = [10], v2 = [12], v3 = [42], v4 = [40],...Ch. 8.3 - Prob. 16ECh. 8.3 - In Exercises 17-20, prove the given statement...Ch. 8.3 - In Exercises 17-20, prove the given statement...Ch. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.4 - Prob. 1PPCh. 8.4 - Let L be the line in 2 through the points [14] and...Ch. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - In Exercises 3 and 4, determine whether each set...Ch. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - In Exercises 7-10, let H be the hyperplane through...Ch. 8.4 - Prob. 11ECh. 8.4 - Let a1=[215], a2=[313], a3=[160], b1=[051],...Ch. 8.4 - Prob. 13ECh. 8.4 - Let F1 and F2 be 4-dimensional flats in 6, and...Ch. 8.4 - In Exercises 15-20, write a formula for a linear...Ch. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - In Exercises 15-20, write a formula for a linear...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Let p=[41], Find a hyperplane [f : d] that...Ch. 8.4 - Let q=[23] and p=[61]. Find a hyperplane [f : d]...Ch. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prove that the convex hull of a bounded set is...Ch. 8.5 - Find the minimal representation of the polytope P...Ch. 8.5 - Given points p1 = [10], p2 = [23], and p3 = [12]...Ch. 8.5 - Given points p1 = [01], p2 = [21], and p3 = [12]...Ch. 8.5 - Repeat Exercise 1 where m is the minimum value of...Ch. 8.5 - Repeat Exercise 2 where m is the minimum value of...Ch. 8.5 - In Exercises 5-8, find the minimal representation...Ch. 8.5 - In Exercises 5-8, find the minimal representation...Ch. 8.5 - In Exercises 5-8, find the minimal representation...Ch. 8.5 - In Exercises 5-8, find the minimal representation...Ch. 8.5 - Let S = {(x, y) : x2 + (y 1)2 1} {(3, 0)}. Is...Ch. 8.5 - Find an example of a closed convex set S in 2 such...Ch. 8.5 - Find an example of a bounded convex set S in 2...Ch. 8.5 - a. Determine the number of k-faces of the...Ch. 8.5 - a. Determine the number of k-faces of the...Ch. 8.5 - Suppose v1, , vk are linearly independent vectors...Ch. 8.5 - A k-pyramid Pk is the convex hull of a (k ...Ch. 8.5 - Prob. 16ECh. 8.5 - In Exercises 16 and 17, mark each statement True...Ch. 8.5 - Let v be an element of the convex set S. Prove...Ch. 8.5 - If c and S is a set, define cS = {cx : x S}....Ch. 8.5 - Find an example to show that the convexity of S is...Ch. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.6 - A spline usually refers to a curve that passes...Ch. 8.6 - Prob. 2PPCh. 8.6 - Prob. 1ECh. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - Prob. 5ECh. 8.6 - Prob. 6ECh. 8.6 - Let x(t) and y(t) be Bzier curves from Exercise 5,...Ch. 8.6 - Prob. 8ECh. 8.6 - Prob. 9ECh. 8.6 - Prob. 10ECh. 8.6 - In Exercises 11 and 12, mark each statement True...Ch. 8.6 - In Exercises 11 and 12, mark each statement True...Ch. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - Prob. 15ECh. 8.6 - Explain why a cubic Bzier curve is completely...Ch. 8.6 - TrueType fonts, created by Apple Computer and...Ch. 8.6 - Prob. 18E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- T. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY