Concept explainers
It can be shown that
for n = 1, 2, ..., with initial condition
a) Show that
b) Use Exercise 48 to solve the recurrence relation in part (a) to find an explicit formula for C.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
DISCRETE MATHEMATICS LOOSELEAF
- Course Name: Calculus with Analytical Geometry-1 Course Code: MATH 132 Do not use Artificial Intelligent Apps Instruction: 1. Solution must be hand-written 2. Step by step clear explanation Please solve the problem and sketch the graph with paper and pen or pencil 3. Find the domain and ranges of the following √x-2 a) f(x)= x²-9arrow_forwardCalculus Problem: Please help . thank you. Find f'(x)arrow_forward4-2. 1 A calculator with a random number generator produces the following sequence of random numbers: 0.276, 0.123, 0.072, 0.324, 0.815, 0.312, 0.432, 0.283, 0.717. a) Find the sample mean. b) If the calculator produces three-digit random numbers that are uniformly distributed between 0.000 and 0.999, find the variance of the sample mean. c) How large should the sample size be in order to obtain a sample mean whose standard deviation is no greater than 0.0 1?arrow_forward
- No Chatgpt please will upvote Already got wrong Chatgpt answerarrow_forwardConsider the initial value problem mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = = 2 kilograms, c = 8 kilograms per second, k 80 Newtons per meter, and F(t) = 20e¯* = Newtons. Solve the initial value problem. x(t) = = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 t→∞ ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 100 cos(8t) Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 t→∞ ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t)≈ x sp(t) = help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forward
- Consider the initial value problem mx" cx' + kx F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 80 Newtons per meter, and F(t) = 20 sin(6t) kilograms, c = 8 kilograms per second, k = Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 0047 ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = ☐ help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the differential equation y' = - 4xy with initial condition y(0) = 1.9. Recall that Runge-Kutta method has the following formula for computing the next step, where h is the step size: f(xi, Yi) = fx i + (++) k1 = h k2 2 ¯‚ Yi + k₁ h h k3 = fxi 2 `, Yi + k₂· 2 k4 = f(xi+h, yikзh) i+1=i+h k12k22k3 + k4 Yi+1 Yi + h 6 Using Runge-Kutta step size h = 0.4: Estimate y(0.4) ≈ help (numbers) Estimate y(0.8) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forwardDetermine which differential equation corresponds to each phase diagram. You should be able to state briefly how you know your choices are correct. х x 4 4 4 4 3 3 3 3 2 2 2 2 dx ? ✰ dt = 1. = x² - 3x 1 1 1 1 ? ◇ 2. dx dt = x(x − 2) - 0 0 0 0 ? ◇ 3. dx dt = x(2 − x)² -1 -1 -1 -1 Q -2 -2 -2 dx ? ◇ 4. ༤་ dt = = 3x - x² -3 -3 -3 -3 x³- 4x = x²|x − 2| ? ◇ 5. ம் dx dt བི་ dx ? ◇ 6. dt ཝེ་ dx ? 7. dt ཝེ་ dx ? ◇ 8. ཝེ་ dt -4 -4 -4 -4 A B 0 D = = 2x = x² * x * * x * K 4 4 4 4 = 4x - x³ 3 3 3 • 3 Book: Section 1.6 of Notes on Diffy Qs dit for this problem 2 2 2 2 1 1 1 1 0 0 0 8 -1 -1 -1 -1 N 心 -2 -2 -3 -3 -3 -4 -4 -4 -4 E FL G Harrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,