Precalculus: Mathematics for Calculus - 6th Edition
Precalculus: Mathematics for Calculus - 6th Edition
6th Edition
ISBN: 9780840068071
Author: Stewart, James, Redlin, Lothar, Watson, Saleem
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 8.1, Problem 69E

(a)

To determine

To prove: the distance between the polar points .

(a)

Expert Solution
Check Mark

Answer to Problem 69E

Here, It is proved that the distance between the polar points (r1,θ1) and (r2,θ2)is

  d=r12+r222r1r2cos(θ2θ1)

Explanation of Solution

Given: (r1,θ1) and (r2,θ2)is d=r12+r222r1r2cos(θ2θ1)

Calculation:

Use the Law of Cosines to prove that the distance between the polar points (r1,θ1) and (r2,θ2) is

  d=r12+r222r1r2cos(θ2θ1).

Let’s first make an example plot. Point 1is in red, and Point 2is in blue.

Each forms an angle with the positive xaxis , θ , and is a distance rfrom the origin.

  Precalculus: Mathematics for Calculus - 6th Edition, Chapter 8.1, Problem 69E

If connect the two points, form a triangle made of this segment and the two radii. The angle between the two radii is the difference of the two angles , θ1θ2 . Now, use the Law of Cosines to find the third side, d . The Law of Cosines is

  c2=a2+b22abcosC

Since two sides, r1 and r2 , which represents a and b , and C , which is the angle between a and b , solve for solve for c , the side opposite angle C . Let’s plug in the values

  a=r1,b=r2cosC=cos(θ1θ2),andc=dc2=a2+b22abcosCd2=r12+r222r1r2cos(θ1θ2)d=r12+r222r1r2cos(θ1θ2)

Note that because cos(θ)=cosθ,cos(θ1θ2)is equivalent to cos(θ2θ1) . Rewrite our expression as

  d=r12+r222r1r2cos(θ2θ1)

This is the equation asked to prove at the beginning.

Conclusion:

Hence, It is proved that the distance between the polar points (r1,θ1) and (r2,θ2)is

  d=r12+r222r1r2cos(θ2θ1)

(b)

To determine

To find: the distance between the points of the given polar coordinates

(b)

Expert Solution
Check Mark

Answer to Problem 69E

Here, the distance between the points whose polar coordinates are (3,3π/4) and (1,7π/6) is 2.906 .

Explanation of Solution

Calculation:

Find the distance between the points whose polar coordinates are (3,3π/4) and (1,7π/6), using the formula from part (a).

Let’s make Point 1

  (3,3π/4) and Point 2

  (1,7π/6) . Then, our values are

  r1=3,θ1=3π4,r2=1,θ2=7π6

The formula from part (a) states that the distance between two polar points is

  d=r12+r222r1r2cos(θ2θ1)

Plug in the assigned values

  d=(3)2+(1)22(3)(1)cos(7π63π4)d=9+16cos(5π12)d=106cos(5π12)

It will actually be easier to find the value of the cosine if the cosine difference formula is used, which states that

  cos(st)=cosscost+sinssint

So,

  cos(7π63π4)=cos7π6cos3π4+sin7π6sin3π4cos(7π63π4)=(32)(22)+(12)(22)cos(7π63π4)=(64)+(24)cos(5π12)=624=2(31)4

Place this value back into the distance formula.

  d=106cos(5π12)d=106(624)d=103(62)2

This is the exact value of the distance between Points 1 and 2 . The decimal value is about 2.906 .

Conclusion:

Hence, the distance between the points whose polar coordinates are (3,3π/4) and (1,7π/6) is 2.906 .

(c)

To determine

To convert: the points to rectangular coordinates and distance between them.

(c)

Expert Solution
Check Mark

Answer to Problem 69E

Here, the decimal value is about 2.906

Explanation of Solution

Calculation:

Convert the two points from part (b) to regular coordinates, and then find the distance between them (using the regular rectangular formula).

Let’s start with Point 1

find the x- and y- coordinates by using two formulas relating polar and rectangular coordinates.

  x=rcosθandy=rsinθ

Point 1

  (3,3π/4)

  x1=3cos3π4x1=3(22)x1=322y1=3sin3π4y1=3(22)y1=322

Point 1 is

  (322,322)

In rectangular coordinates.

Point 2

  (1,7π/6)

  x2=1cos7π6x2=1(32)x2=32y2=1sin7π6y2=1(12)y2=12

Point 2 is

  (32,12)

In rectangular coordinates.

  d=(x2x1)2+(y2y1)2

Let’s put in the coordinates found for the two points.

  d=((32)(322))2+((12)(322))2d=(3+322)2+(1+322)2

This expression can be further simplified, or just enter the entire expression into a calculator. If this is done, find that the decimal value is about 2.906 . Note that this is the same value found in Part (b).

Conclusion:

Hence, the decimal value is about 2.906

Chapter 8 Solutions

Precalculus: Mathematics for Calculus - 6th Edition

Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - Prob. 49ECh. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Prob. 53ECh. 8.1 - Prob. 54ECh. 8.1 - Prob. 55ECh. 8.1 - Prob. 56ECh. 8.1 - Prob. 57ECh. 8.1 - Prob. 58ECh. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.1 - Prob. 61ECh. 8.1 - Prob. 62ECh. 8.1 - Prob. 63ECh. 8.1 - Prob. 64ECh. 8.1 - Prob. 65ECh. 8.1 - Prob. 66ECh. 8.1 - Prob. 67ECh. 8.1 - Prob. 68ECh. 8.1 - Prob. 69ECh. 8.2 - To plot points in polar coordinates, we use a grid...Ch. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Prob. 40ECh. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Prob. 46ECh. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Orbit of a Satellite Scientists and engineers...Ch. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.3 - A complex number z = a + bi has two parts: a is...Ch. 8.3 - Let z = a + bi. (a) The modulus of z is r =...Ch. 8.3 - Prob. 3ECh. 8.3 - How many different nth roots does a nonzero...Ch. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - Prob. 31ECh. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Prob. 34ECh. 8.3 - Prob. 35ECh. 8.3 - Prob. 36ECh. 8.3 - Prob. 37ECh. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - Prob. 43ECh. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - Prob. 49ECh. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.3 - Prob. 52ECh. 8.3 - Prob. 53ECh. 8.3 - Prob. 54ECh. 8.3 - Prob. 55ECh. 8.3 - Prob. 56ECh. 8.3 - Prob. 57ECh. 8.3 - Prob. 58ECh. 8.3 - Prob. 59ECh. 8.3 - Prob. 60ECh. 8.3 - Prob. 61ECh. 8.3 - Prob. 62ECh. 8.3 - Prob. 63ECh. 8.3 - Prob. 64ECh. 8.3 - Prob. 65ECh. 8.3 - Prob. 66ECh. 8.3 - Prob. 67ECh. 8.3 - Prob. 68ECh. 8.3 - Prob. 69ECh. 8.3 - Prob. 70ECh. 8.3 - Prob. 71ECh. 8.3 - Prob. 72ECh. 8.3 - Prob. 73ECh. 8.3 - Prob. 74ECh. 8.3 - Prob. 75ECh. 8.3 - Prob. 76ECh. 8.3 - Prob. 77ECh. 8.3 - Prob. 78ECh. 8.3 - Prob. 79ECh. 8.3 - Prob. 80ECh. 8.3 - Prob. 81ECh. 8.3 - Prob. 82ECh. 8.3 - Prob. 83ECh. 8.3 - Prob. 84ECh. 8.3 - Prob. 85ECh. 8.3 - Prob. 86ECh. 8.3 - Prob. 87ECh. 8.3 - Prob. 88ECh. 8.3 - Prob. 89ECh. 8.3 - Prob. 90ECh. 8.3 - Prob. 91ECh. 8.3 - Prob. 92ECh. 8.3 - Prob. 93ECh. 8.3 - Prob. 94ECh. 8.3 - Prob. 95ECh. 8.3 - Prob. 96ECh. 8.3 - Prob. 97ECh. 8.3 - Prob. 98ECh. 8.3 - Prob. 99ECh. 8.3 - Prob. 100ECh. 8.4 - (a) The parametric equations x = f(t) and y = g(t)...Ch. 8.4 - (a) True or False? The same curve can be described...Ch. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - Prob. 43ECh. 8.4 - Prob. 44ECh. 8.4 - Prob. 45ECh. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Prob. 49ECh. 8.4 - Prob. 50ECh. 8.4 - Prob. 51ECh. 8.4 - Prob. 52ECh. 8.4 - Prob. 53ECh. 8.4 - Prob. 54ECh. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Prob. 57ECh. 8.4 - Prob. 58ECh. 8.4 - Prob. 59ECh. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Prob. 62ECh. 8.4 - Prob. 63ECh. 8.4 - Prob. 64ECh. 8.4 - Prob. 65ECh. 8.4 - Prob. 66ECh. 8.4 - Prob. 67ECh. 8.4 - Prob. 68ECh. 8.4 - Prob. 69ECh. 8 - Prob. 1RCCCh. 8 - Prob. 2RCCCh. 8 - Prob. 3RCCCh. 8 - Prob. 4RCCCh. 8 - Prob. 5RCCCh. 8 - Prob. 6RCCCh. 8 - Prob. 7RCCCh. 8 - Prob. 8RCCCh. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 24RECh. 8 - Prob. 25RECh. 8 - Prob. 26RECh. 8 - Prob. 27RECh. 8 - Prob. 28RECh. 8 - Prob. 29RECh. 8 - Prob. 30RECh. 8 - Prob. 31RECh. 8 - Prob. 32RECh. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RECh. 8 - Prob. 36RECh. 8 - Prob. 37RECh. 8 - Prob. 38RECh. 8 - Prob. 39RECh. 8 - Prob. 40RECh. 8 - Prob. 41RECh. 8 - Prob. 42RECh. 8 - Prob. 43RECh. 8 - Prob. 44RECh. 8 - Prob. 45RECh. 8 - Prob. 46RECh. 8 - Prob. 47RECh. 8 - Prob. 48RECh. 8 - Prob. 49RECh. 8 - Prob. 1TCh. 8 - Prob. 2TCh. 8 - Prob. 3TCh. 8 - Prob. 4TCh. 8 - Prob. 5TCh. 8 - Prob. 6TCh. 8 - Prob. 7TCh. 8 - Find parametric equations for the line of slope 2...Ch. 8 - Prob. 1PCh. 8 - Path of a Baseball Suppose a baseball is thrown at...Ch. 8 - Path of a Rocket Suppose that a rocket is fired at...Ch. 8 - Firing a Missile The initial speed of a missile is...Ch. 8 - Prob. 5PCh. 8 - Shooting into the Wind Suppose that a projectile...Ch. 8 - Prob. 7P
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Polar Coordinates Basic Introduction, Conversion to Rectangular, How to Plot Points, Negative R Valu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=aSdaT62ndYE;License: Standard YouTube License, CC-BY