Concept explainers
Exercises 33-37 deal with a variation of the Josephus problem described by Graham, Knuth, and Patashnik in [GrKnPa94). This problem is based on an account by the historian Flavius Josephus, who was part of a band of 41 Jewish rebels trapped in a cave by the Romans during the Jewish-Roman war of the first century. The rebels preferred suicide to capture; they decided to form a circle and to repeatedly count off around the circle, killing every third rebel left alive. However, Josephus and another rebel did not want to be killed this way; they determined the positions where they should stand to be the last two rebels remaining alive. The variation we consider begins with n people, numbered 1 to n, standing around a circle. In each stage, every second person still left alive is eliminated until only one survives. We denote the number of the survivor by J(n).
34 Use the values you found in Exercise 33 to conjecture a formula for J(n). [Hint: Write

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
DISCRETE MATH CONNECT ACCESS
- Find the radius of circle carrow_forward6 + 3 ² 3679 a 2 च 2 Find the value of x, round to the nearest tenth. 7. 360 L 173² 2 = 7.1 7x-20 8. Q 9 T 9 P 3 360 4 3x x = 3.1 S 34 7+ 7 10. CD = CB, GQ = x +5, EQ = 3x - 6. G LU E B x+5=3x-6 -S-S x = 3x-11 3-3 4A 6.5arrow_forwardFind the sample space. Sunscreen SPF 10, 15, 30, 45, 50 Type Lotion, Spray, Gelarrow_forward
- The graphs of the function F (left, in blue) and G (right, in red) are below. Answer the following questions. F'(1) G'(1) F'(6) G'(6)arrow_forward1. One of the partial fractions for 2 4x²+x-9 x3+2x²-3x 2 x+1 a) x23 b) x 1½ c) x² d) x-1 x isarrow_forward1. One of the partial fractions for 2 2 4x²+x-9 x3+2x²-3x a) x3 b) x11 c) x² d) z x-1 2. Identify the improper integral. 1 x 2 x dx a) 3x dx b) f² 3x dx 0 3-2x 0 3-2x x is c) √2^: 4 √232x dx d) fo² 3x dx 1 1 0 3-2x B. So eax dx converges to if : a) O if a0 c) - 1½ ifa 0arrow_forward
- Complete the square and find the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) dx x²-12x+27arrow_forwardComplete the table. Enter DNE if a quantity doesn't exist or NEI if not enough information is given. f(c) limx-->c- f(x) limx-->c+ f(x) limx -->c f(x) continuity at x=c 2 4arrow_forwardFind the indefinite integral. (Use C for the constant of integration.) 9x arcsin(x) dxarrow_forward
- Find the indefinite integral using the substitution x = 5 sin(e). (Use C for the constant of integration.) 1 dx (25-x²)3/2arrow_forwardFind the indefinite integral using the substitution x = 7 sec(0). (Use C for the constant of integration.) √ ׳ √x² - 49 dxarrow_forwardUse the Cauchy Riemann equations (polar form version). Also, describe what happens at the branch cut.arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
