A circular spinner is divided into 15 sectors of equal area: 6 red sectors, 5 blue, 3 yellow, and 1 green. In Problems, 7 - 14 , consider the experiment of spinning the spinner once. Find the probability that the spinner lands on: Blue, red, yellow, or green.
A circular spinner is divided into 15 sectors of equal area: 6 red sectors, 5 blue, 3 yellow, and 1 green. In Problems, 7 - 14 , consider the experiment of spinning the spinner once. Find the probability that the spinner lands on: Blue, red, yellow, or green.
Solution Summary: The author calculates the probability that the spinner lands on blue, red, yellow, or green area if it is divided into 15 sectors.
A circular spinner is divided into
15
sectors of equal area:
6
red sectors,
5
blue,
3
yellow, and
1
green. In Problems,
7
-
14
, consider the experiment of spinning the spinner once. Find the probability that the spinner lands on:
5. (a) State the Residue Theorem. Your answer should include all the conditions required
for the theorem to hold.
(4 marks)
(b) Let y be the square contour with vertices at -3, -3i, 3 and 3i, described in the
anti-clockwise direction. Evaluate
に
dz.
You must check all of the conditions of any results that you use.
(5 marks)
(c) Evaluate
L
You must check all of the conditions of any results that you use.
ཙ
x sin(Tx)
x²+2x+5
da.
(11 marks)
3. (a) Lety: [a, b] C be a contour. Let L(y) denote the length of y. Give a formula
for L(y).
(1 mark)
(b) Let UCC be open. Let f: U→C be continuous. Let y: [a,b] → U be a
contour. Suppose there exists a finite real number M such that |f(z)| < M for
all z in the image of y. Prove that
<
||, f(z)dz| ≤ ML(y).
(3 marks)
(c) State and prove Liouville's theorem. You may use Cauchy's integral formula without
proof.
(d) Let R0. Let w € C. Let
(10 marks)
U = { z Є C : | z − w| < R} .
Let f UC be a holomorphic function such that
0 < |ƒ(w)| < |f(z)|
for all z Є U. Show, using the local maximum modulus principle, that f is constant.
(6 marks)
3. (a) Let A be an algebra. Define the notion of an A-module M. When is a module M
a simple module?
(b) State and prove Schur's Lemma for simple modules.
(c) Let AM(K) and M = K" the natural A-module.
(i) Show that M is a simple K-module.
(ii) Prove that if ƒ € Endд(M) then ƒ can be written as f(m) = am, where a
is a matrix in the centre of M, (K).
[Recall that the centre, Z(M,(K)) == {a Mn(K) | ab
M,,(K)}.]
= ba for all bЄ
(iii) Explain briefly why this means End₁(M) K, assuming that Z(M,,(K))~
K as K-algebras.
Is this consistent with Schur's lemma?
Chapter 8 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Probability & Statistics (28 of 62) Basic Definitions and Symbols Summarized; Author: Michel van Biezen;https://www.youtube.com/watch?v=21V9WBJLAL8;License: Standard YouTube License, CC-BY
Introduction to Probability, Basic Overview - Sample Space, & Tree Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=SkidyDQuupA;License: Standard YouTube License, CC-BY