
An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem IM
To determine
To pick the right word from list: The electric device that converts electrical energy into mechanical energy.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
N
(b) Find the highest speed (in m/s) reached by the car during the final section of track length…
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Please answer.
Chapter 8 Solutions
An Introduction to Physical Science
Ch. 8.1 - What is the difference between the law of charges...Ch. 8.1 - Prob. 2PQCh. 8.2 - Prob. 1PQCh. 8.2 - Prob. 2PQCh. 8.2 - A coffeemaker draws 10 A of current operating at...Ch. 8.3 - Prob. 1PQCh. 8.3 - Prob. 2PQCh. 8.3 - Prob. 8.2CECh. 8.4 - How are the law of poles and the law of charges...Ch. 8.4 - Where is the Earth's north magnetic pole located?
Ch. 8.5 - What are the two basic principles of...Ch. 8.5 - What's the difference between a motor and a...Ch. 8.5 - Prob. 8.3CECh. 8 - KEY TERMS 1. electric charge (8.1) 2. electrons 3....Ch. 8 - Prob. BMCh. 8 - Prob. CMCh. 8 - Prob. DMCh. 8 - Prob. EMCh. 8 - Prob. FMCh. 8 - Prob. GMCh. 8 - Prob. HMCh. 8 - Prob. IMCh. 8 - Prob. JMCh. 8 - Prob. KMCh. 8 - Prob. LMCh. 8 - Prob. MMCh. 8 - Prob. NMCh. 8 - Prob. OMCh. 8 - Prob. PMCh. 8 - Prob. QMCh. 8 - Prob. RMCh. 8 - Prob. SMCh. 8 - Prob. TMCh. 8 - Prob. UMCh. 8 - Prob. VMCh. 8 - Prob. WMCh. 8 - Prob. XMCh. 8 - Prob. YMCh. 8 - Which of the following has a positive (+) charge?...Ch. 8 - Two equal positive charges are placed equidistant...Ch. 8 - In a dc circuit, how do electrons move? (8.2) (a)...Ch. 8 - What is a unit of voltage? (8.2) (a) joule (b)...Ch. 8 - The ohm is another name for which of the...Ch. 8 - Appliances with heating elements require which of...Ch. 8 - The greatest equivalent resistance occurs when...Ch. 8 - Prob. 8MCCh. 8 - Prob. 9MCCh. 8 - Prob. 10MCCh. 8 - What type of energy conversion does a motor...Ch. 8 - What type of energy conversion does a generator...Ch. 8 - Prob. 13MCCh. 8 - A transformer with more windings on the primary...Ch. 8 - Prob. 1FIBCh. 8 - ___ are neither good conductors nor good...Ch. 8 - Prob. 3FIBCh. 8 - Voltage is defined as work per___. (8.2)Ch. 8 - An electric circuit that is not a complete path is...Ch. 8 - Prob. 6FIBCh. 8 - Prob. 7FIBCh. 8 - Prob. 8FIBCh. 8 - Prob. 9FIBCh. 8 - Prob. 10FIBCh. 8 - Prob. 11FIBCh. 8 - Prob. 12FIBCh. 8 - Prob. 1SACh. 8 - A large charge +Q and a small charge q are a short...Ch. 8 - Explain how a charged rubber comb attracts bits of...Ch. 8 - Why do clothes sometimes stick together when...Ch. 8 - Prob. 5SACh. 8 - Prob. 6SACh. 8 - Prob. 7SACh. 8 - If the drift velocity in a conductor is so small,...Ch. 8 - Prob. 9SACh. 8 - Why are home appliances connected in parallel...Ch. 8 - Compare the safety features of (a) fuses, (b)...Ch. 8 - Prob. 12SACh. 8 - Sometimes resistances in a circuit are described...Ch. 8 - Why do iron filings show magnetic field patterns?Ch. 8 - Compare the law of charges and the law of poles.Ch. 8 - Prob. 16SACh. 8 - What is the principle of an electromagnet?Ch. 8 - (a) What does the Earths magnetic field resemble,...Ch. 8 - Describe the basic principle of a dc electric...Ch. 8 - What happens (a) when a proton moves parallel to a...Ch. 8 - Prob. 21SACh. 8 - Prob. 22SACh. 8 - Prob. 23SACh. 8 - Body injury from electricity depends on the...Ch. 8 - Prob. 1VCCh. 8 - Prob. 1AYKCh. 8 - Prob. 2AYKCh. 8 - Answer both parts of Question 2 for a charge of +1...Ch. 8 - An old saying about electrical safety states that...Ch. 8 - Prob. 5AYKCh. 8 - Prob. 6AYKCh. 8 - Prob. 7AYKCh. 8 - Suppose you are on an expedition to locate the...Ch. 8 - How many electrons make up one coulomb of charge?...Ch. 8 - An object has one million more electrons than...Ch. 8 - What are the forces on two charges of +0.60 C and...Ch. 8 - Find the force of electrical attraction between a...Ch. 8 - There is a net passage of 4.8 1018 electrons by a...Ch. 8 - A current of 1.50 A flows in a conductor for 6.5...Ch. 8 - To separate a 0.25-C charge from another charge,...Ch. 8 - Prob. 8ECh. 8 - If an electrical component with a resistance of 50...Ch. 8 - What battery voltage is necessary to supply 0.50 A...Ch. 8 - A car radio draws 0.25 A of current in the autos...Ch. 8 - A flashlight uses batteries that add up to 3.0 V...Ch. 8 - How much does it cost to run a 1500-W hair dryer...Ch. 8 - Prob. 14ECh. 8 - A 24- component is connected to a 12-V battery....Ch. 8 - Prob. 16ECh. 8 - The heating element of an iron operates at 110 V...Ch. 8 - A 100-W light bulb is turned on. It has an...Ch. 8 - Two resistors with values of 25 and 35 ,...Ch. 8 - Prob. 20ECh. 8 - A student in the laboratory connects a 10-...Ch. 8 - Prob. 22ECh. 8 - A 30.0- resistor and a 60.0- resistor in series...Ch. 8 - A 30.0- resistor and a 60.0- resistor in parallel...Ch. 8 - Prob. 25ECh. 8 - A transformer has 600 turns on its primary and 200...Ch. 8 - A transformer with 1000 turns in its primary coil...Ch. 8 - A power company transmits current through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:arrow_forward"looks" like a particle.) ...32 GO In Fig. 22-55, positive charge q = 7.81 pC is spread uni- formly along a thin nonconducting rod of length L = 14.5 cm. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the electric field produced at point P, at distance R = 6.00 cm from the rod along its perpendicular bisector? R y Р + + + + + + + + +-× L Figure 22-55 Problem 32.arrow_forward1) A horizontal wire carrying current I in +x direction on the x-axis from x=0 to x=2 2) A vertical wire carrying current I upward at along the x=2 line from y=0 to y=8 3) A diagonal straight wire started at the origin and it ends at y=8 x=2 carrying a current in SE direction ( diagonally downward); y=4x In a regional magnetic field that is given in vector notation by B = ( y i - x j )/(x^2+y^2+25) As components Bx = (y+1)/x^2+y^2+25) By = (1- x )/(x^2+y^2+25) Find the integral expression for the net force for each branch carrying 5 ampere current.arrow_forward
- An electric power station that operates at 30 KV and uses a 15:1 set step-up ideal transformer is producing 400MW (Mega-Watt) of power that is to be sent to a big city with only 2.0% loss. What which is located 270 km away is the resistance of the Two wires that are being used? 52arrow_forwardSlink, from Toy Story, is a slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed (as shown in figure A) with no initial velocity and reaches the floor right as his velocity hits zero again (as shown in figure C).arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forward
- Calculate the energy needed to melt 50 g of 0°C icearrow_forwardTwo very long line charges are set up along lines that areparallel to the z-axis, so they set up Electric fields strictly in the xy plane. One goes throughthe x-axis at x = −0.40 m and has charge a density λ1 = +12.0 μC/m, the other goesthrough the x-axis at x = +0.40 m has charge density λ2 = −8.0 μC/m.A. Find the Electric field at point A: (0.40, 0.80) (distances in meters). Give answersin unit vector notation and draw a graph of the x-y plane with the E-fields you justfound.B. Find a point on the x-axis at which the total E-field is 0.arrow_forwardIn order to increase the amount of exercise in her daily routine, Tara decides to walk up the four flights of stairs to her car instead of taking the elevator. Each of the steps she takes are 18.0 cm high, and there are 12 steps per flight. (a) If Tara has a mass of 77.0 kg, what is the change in the gravitational potential energy of the Tara-Earth system (in J) when she reaches her car? ] (b) If the human body burns 1.5 Calories (6.28 x 10³ J) for each ten steps climbed, how much energy (in J) has Tara burned during her climb? ] (c) How does the energy she burned compare to the change in the gravitational potential energy of the system? Eburned Δυarrow_forward
- A 4.40 kg steel ball is dropped onto a copper plate from a height of 10.0 m. If the ball leaves a dent 2.75 mm deep, what is the average force exerted by the plate on the ball during the impact? Narrow_forwardA block of mass m = 7.00 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Assume h₂ = 7.80 m.) a m ha 3.20 m 2.00 m i (a) Determine the block's speed at points ® and point B ©. m/s m/s point (b) Determine the net work done by the gravitational force on the block as it moves from point J A to pointarrow_forwardA 1.10 x 10²-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius R R B 2R/3 (a) Calculate its gravitational potential energy at A relative to B. ] (b) Calculate its kinetic energy at B. ] (c) Calculate its speed at B. m/s (d) Calculate its potential energy at C relative to B. J (e) Calculate its kinetic energy at C. ] = 26.5 cm (figure below).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY