Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 91GP
A 56-kg student runs at 5.0 m/s, grabs a hanging rope, and swings out over a lake (Fig. 8–45). He releases the rope when his velocity is zero. (a) What is the angle θ when he releases the rope? (b) What is the tension in the rope just before he releases it? (c) What is the maximum tension in the rope?
FIGURE 8–45 Problem 91.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bowling ball hangs from a 1.0-m-long cord, Fig. 7–30:
(i) A 200-gram putty ball moving 5.0 m/s hits the bowling
ball and sticks to it, causing the bowling ball to swing up;
(ii) a 200-gram rubber ball moving 5.0 m/s hits the bowling
ball and bounces straight back at nearly 5.0 m/s, causing the
bowling ball to swing up. Describe what happens.
(a) The bowling ball swings up by the same amount in
both (i) and (ii).
(b) The ball swings up farther in (i) than in (ii).
(c) The ball swings up farther in (ii) than in (i).
(d) Not enough information is given; we need the contact
time between the rubber ball and the bowling ball.
(i)
(ii)
(g) (h) (I) please
16) A boy of mass 60.0 kg is sledding down a 70.0 m slope starting from rest. The slope is angled at 15.0o below the horizontal. After going 20.0 m along the slope he passes a friend who jumps on the sled. The friend has a mass of 50.0 kg. Assume the slope is frictionless and ignoring the mass of the sled. (a)What is the speed of the boy on the sled just before he picks up the friend? (b) What is the momentum of the boy just before he picks up the friend? (c) What is the speed of the two boys and the sled just after the friend jumps on? (d) What power is exerted by the first boy in running back up the hill in 54 seconds?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write each number in decimal form.
35. 8.4 × 10–6
Applied Physics (11th Edition)
Why can a boat easily produce a shock wave on the water surface, while only a very high-speed aircraft can prod...
Essential University Physics: Volume 1 (3rd Edition)
6. A construction worker with a weight of 850 N stands on a roof that is sloped at 20°. What is the magnitude...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
When water freezes, its volume increases by 9.05 . What force per unit area is water capable of exerting on a c...
University Physics Volume 1
1. A solid ball and a solid cylinder roll down a ramp. They both start from rest at the same time and place. Wh...
Physics: Principles with Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m1 = 4.00 kg initially at rest on top of a frictionless, horizontal table is attached by a lightweight string to a second block of mass m2 = 3.00 kg hanging vertically from the edge of the table and a distance h = 0.450 m above the floor (Fig. P8.77). If the edge of the table is assumed to be frictionless, what is the speed with which the first block leaves the edge of the table?arrow_forwardA 2000-kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into the freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it can accept?arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forward
- The lunar module orbits first 110 km above the surface of the Moon at a speed of 1.63 km/h and then it's with a short engine jerk directed towards the Moon. At what speed does it collide with the Moon?arrow_forwardAn object of mass, m = 56 kg starts to slide from rest on a curved ramp from height, H = 37 m above the end of the ramp (as shown in the figure). Consider the ramp to be frictionless and neglect the effects of air resistance. %3D H yend of ramp (a) What is the speed of the object at the end of the ramp? (b) If the velocity of the object at the end of the ramp makes an angle 0 = 21° with the horizontal, what is maximum height, h of its jump above the end of the ramp?arrow_forwardTwo blocks of mass ma and mB, resting on a frictionless table, are connected by a stretched spring and then released (Fig. 7-48). (a) Is there a net external force on the system before release? (b) Determine the ratio of their speeds, vA/VB . (c) What is the ratio of their kinetic energies? (d) Describe the motion of the CM of this system. Ignore mass of spring. VB mB FIGURE 7-48 Problem 83.arrow_forward
- 1) A marble launcher fires a marble at an angle of 50° to the horizontal with an initial velocity of 6.2 m/s. Assuming no air friction, what is the maximum height above the launcher's muzzle that the marble reaches?arrow_forwardA softball having a mass of 0.25 kg is pitched horizontally at 120 km/h By the time it reaches the plate, it may have slowed by 10%. Neglecting gravity, estimate the average force of air resistance during a pitch. The distance between the plate and the pitcher is about 15 m.arrow_forward#4arrow_forward
- *15-52. The free-rolling ramp has a mass of 40 kg. A 10-kg crate is released from rest at A and slides down 3.5 m to point B. If the surface of the ramp is smooth, determine the ramp's speed when the crate reaches B. Also, what is the velocity of the crate? 3.5 m 30° 00.arrow_forward(III) A pendulum consists of a mass M hanging at the bottom end of a massless rod of length l, which has a frictionless pivot at its top end. A mass m, moving as shown in Fig. 7–35 with velocity v, impacts M and becomes embedded. What is the smallest value of v sufficient to cause the pendulum (with embedded mass m) to swing clear over the top of its arc? m FIGURE 7-35 M Problem 42.arrow_forwardAn object of mass 1000 g falls from a height of 30m on the san below. If it penetrates 4cm into the sand, what opposing force is exerted on it by the sand? Neglect air friction. (f = 7350 N)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY