Aspirin can be made in the laboratory by reacting acetic anhydride C 4 H 6 O 3 with salicylic acid C 7 H 6 O 3 to form aspirin C 9 H 8 O 4 and acetic acid C 2 H 4 O 2 . The balanced equation is: C 4 H 6 O 3 + C 7 H 6 O 3 → C 9 H 8 O 4 + C 2 H 4 O 2 In a laboratory synthesis, a student begins with 5.00 mL of acetic anhydride (density = 1.08g/mL) and 2.08 g of salicylic acid. Once the reaction is complete, student collects 2.01 g of aspirin. Determine the limiting reactant, theoretical yield of aspirin, and percent yield for the reaction
Aspirin can be made in the laboratory by reacting acetic anhydride C 4 H 6 O 3 with salicylic acid C 7 H 6 O 3 to form aspirin C 9 H 8 O 4 and acetic acid C 2 H 4 O 2 . The balanced equation is: C 4 H 6 O 3 + C 7 H 6 O 3 → C 9 H 8 O 4 + C 2 H 4 O 2 In a laboratory synthesis, a student begins with 5.00 mL of acetic anhydride (density = 1.08g/mL) and 2.08 g of salicylic acid. Once the reaction is complete, student collects 2.01 g of aspirin. Determine the limiting reactant, theoretical yield of aspirin, and percent yield for the reaction
Solution Summary: The author explains the limiting reactant, theoretical yield, and actual yield of the reaction between salicylic acid and acetic anhydride.
Aspirin can be made in the laboratory by reacting acetic anhydride
C
4
H
6
O
3
with salicylic acid
C
7
H
6
O
3
to form aspirin
C
9
H
8
O
4
and acetic acid
C
2
H
4
O
2
. The balanced equation is:
C
4
H
6
O
3
+
C
7
H
6
O
3
→
C
9
H
8
O
4
+
C
2
H
4
O
2
In a laboratory synthesis, a student begins with 5.00 mL of acetic anhydride (density = 1.08g/mL) and 2.08 g of salicylic acid. Once the reaction is complete, student collects 2.01 g of aspirin. Determine the limiting reactant, theoretical yield of aspirin, and percent yield for the reaction
Rank the following compounds most to least acidic:
a)
О
OH
요애
OH
.OH
flow flow
О
F
F
F
F
OH
F
b)
Ha
EN-Ha
CI
Ha
F
F CI
Ha
a)
b)
Provide arrows to show the mechanisms and then predict the products of the following acid
base reaction. Use pKas to determine which way the reaction will favor (Hint: the lower pka
acid will want to dissociate)
Дон
OH
Ha
OH
NH2
c)
H
H-O-H
MATERIALS. Differentiate between interstitial position and reticular position.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY