Java: An Introduction to Problem Solving and Programming plus MyProgrammingLab with Pearson eText -- Access Card Package (7th Edition)
7th Edition
ISBN: 9780133862119
Author: Walter Savitch
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8PP
Program Plan Intro
Encoder and Decoder using “JFrame”
Filename: “SubstitutionCipher.java”
- Define the “SubstitutionCipher” class which implements “MessageDecoder” and “MessageEncoder” interfaces.
- Declare the “s” variable.
- Define the constructor with the parameter “shift”.
- Set the value to the declared variable.
- Define the “encode” method.
- Declare the string variable “msg” with the empty string.
- The “for” loop iterate 0 to the length of the plain text.
- Declare and assign the character to “c” variable.
- Add the “msg” and “shift” value (by calling the “shift” method).
- Return the “msg” value.
- The “shift” method is used to move the value to the number of moves the user entered in the main class.
- Declare the variable “ch” and assign the value.
- Check the “c” value is in the series of “a” to “z”.
- Shift the value after “c” value.
- Check the “c” value is in the series of “A” to “Z”.
- Shift the value after “c” value.
- Return the “msg” value.
- Shift the value after “c” value.
- Define the “decode” method.
- Declare the string variable and assign empty string.
- The “for” loop iterate 1 to length of cipher text.
- Get the character index and stored it in the “ch” variable.
- Append the characters.
- Return the decoded string.
Filename: “ShuffleCipher.java”
- Define the class “ShuffleCipher” which implements “MessageDecoder” and “MessageEncoder” interfaces.
- Declare the “n” integer variable.
- Define the constructor along with a parameter “n”.
- Set the value to the declared variable.
- Define the “encode” method.
- Declare and assign the value to the variable.
- The “for” loop iterate till “n” numbers.
- Call the “shuffle” method with an argument.
- Return the encoded text.
- Call the “shuffle” method with an argument.
- Define the “shuffle” method.
- Declare the “m” variable.
- Find the midterm of the given plain text for splitting into two halves.
- Declare the “a”, and “b” variables.
- Call the “substring” with the arguments and stored it “a” variable.
- Call the “substring” with the argument and stored it “b” variable.
- The “for” loop is used to append the two substrings.
- Finally return the string.
- Define the “decode” method.
- Declare the required variables.
- The “for” loop shuffling “n” times to get the original plain text.
- The inner “for” loop to get the even number of characters from encoded message.
- Another inner “for” loop to get the odd number of characters from encoded message.
- Assign the “t” to the “d” variable.
- Set the “t” to empty.
- Return the decoded string.
Filename: “MessageEncoder.java”
- Define the “MessageEncoder” interface.
- Declare the “encode” method along with the parameter “plainText”.
Filename: “MessageDecoder.java”
- Define the “MessageDecoder” interface.
- Declare the “decode” method along with the parameter “cipherText”.
Filename: “CoderFrame.java”
- Create a main class “CoderFrame”.
- Declare the constant variables.
- Create the required variables for buttons, text fields, and label.
- Define the constructor.
- Set the window size.
- Close the window after clicking “X” mark in the window.
- Create four buttons.
- Create the objects for the “ShuffleCipher” class.
- Create the text fields, and label.
- Set the layout.
- Add the text fields, labels, and buttons on the output window.
- Define “actionPerformed” method.
- If the action command is equal to “Encode”, then execute “if” condition.
- Get the text.
- Set the text.
- If the action command is equal to “Decode”, then execute “if” condition.
- Get the text.
- Set the text.
- If the action command is equal to “Shuffle Code”, then execute “if” condition.
- Get the text.
- Declare the variable and covert the value as integer type.
- Create the objects for the “ShuffleCipher” class.
- If the action command is equal to “Substitution Code”, then execute “if” condition.
- Get the text.
- Declare the variable and covert the value as integer type.
- Create the objects for the “SubstitutionCipher” class.
- If the action command is equal to “Encode”, then execute “if” condition.
Filename: “ShowCoder.java”
- Define the “ShowCoder” class.
- Create an object for “CoderFrame” class.
- Display the window.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Start with the initial angles within the integration and just integrate them without mapping them to specific quadrants. Use python and radians
How does encryption prevent a hacker from getting your data
what is one way to secure a phone
Chapter 8 Solutions
Java: An Introduction to Problem Solving and Programming plus MyProgrammingLab with Pearson eText -- Access Card Package (7th Edition)
Ch. 8.1 - Prob. 1STQCh. 8.1 - Suppose the class SportsCar is a derived class of...Ch. 8.1 - Suppose the class SportsCar is a derived class of...Ch. 8.1 - Can a derived class directly access by name a...Ch. 8.1 - Can a derived class directly invoke a private...Ch. 8.1 - Prob. 6STQCh. 8.1 - Suppose s is an object of the class Student. Base...Ch. 8.2 - Give a complete definition of a class called...Ch. 8.2 - Add a constructor to the class Student that sets...Ch. 8.2 - Rewrite the definition of the method writeoutput...
Ch. 8.2 - Rewrite the definition of the method reset for the...Ch. 8.2 - Can an object be referenced by variables of...Ch. 8.2 - What is the type or types of the variable(s) that...Ch. 8.2 - Prob. 14STQCh. 8.2 - Prob. 15STQCh. 8.2 - Consider the code below, which was discussed in...Ch. 8.2 - Prob. 17STQCh. 8.3 - Prob. 18STQCh. 8.3 - Prob. 19STQCh. 8.3 - Is overloading a method name an example of...Ch. 8.3 - In the following code, will the two invocations of...Ch. 8.3 - In the following code, which definition of...Ch. 8.4 - Prob. 23STQCh. 8.4 - Prob. 24STQCh. 8.4 - Prob. 25STQCh. 8.4 - Prob. 26STQCh. 8.4 - Prob. 27STQCh. 8.4 - Prob. 28STQCh. 8.4 - Are the two definitions of the constructors given...Ch. 8.4 - The private method skipSpaces appears in the...Ch. 8.4 - Describe the implementation of the method drawHere...Ch. 8.4 - Is the following valid if ShapeBaSe is defined as...Ch. 8.4 - Prob. 33STQCh. 8.5 - Prob. 34STQCh. 8.5 - What is the difference between what you can do in...Ch. 8.5 - Prob. 36STQCh. 8 - Consider a program that will keep track of the...Ch. 8 - Implement your base class for the hierarchy from...Ch. 8 - Draw a hierarchy for the components you might find...Ch. 8 - Suppose we want to implement a drawing program...Ch. 8 - Create a class Square derived from DrawableShape,...Ch. 8 - Create a class SchoolKid that is the base class...Ch. 8 - Derive a class ExaggeratingKid from SchoolKid, as...Ch. 8 - Create an abstract class PayCalculator that has an...Ch. 8 - Derive a class RegularPay from PayCalculator, as...Ch. 8 - Create an abstract class DiscountPolicy. It should...Ch. 8 - Derive a class BulkDiscount from DiscountPolicy,...Ch. 8 - Derive a class BuyNItemsGetOneFree from...Ch. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - Create an interface MessageEncoder that has a...Ch. 8 - Create a class SubstitutionCipher that implements...Ch. 8 - Create a class ShuffleCipher that implements the...Ch. 8 - Define a class named Employee whose objects are...Ch. 8 - Define a class named Doctor whose objects are...Ch. 8 - Create a base class called Vehicle that has the...Ch. 8 - Create a new class called Dog that is derived from...Ch. 8 - Define a class called Diamond that is derived from...Ch. 8 - Prob. 2PPCh. 8 - Prob. 3PPCh. 8 - Prob. 4PPCh. 8 - Create an interface MessageDecoder that has a...Ch. 8 - For this Programming Project, start with...Ch. 8 - Modify the Student class in Listing 8.2 so that it...Ch. 8 - Prob. 8PPCh. 8 - Prob. 9PPCh. 8 - Prob. 10PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- I need help creating the network diagram and then revising it for the modified activity times.arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forwardGiven the following Extended-BNF grammar of the basic mathematical expressions: Show the derivation steps for the expression: ( 2 + 3 ) * 6 – 20 / ( 3 + 1 ) Draw the parsing tree of this expression. SEE IMAGEarrow_forward
- Whentheuserenters!!,themostrecentcommandinthehistoryisexecuted.In the example above, if the user entered the command: Osh> !! The ‘ls -l’ command should be executed and echoed on user’s screen. The command should also be placed in the history buffer as the next command. Whentheuserentersasingle!followedbyanintegerN,theNthcommandin the history is executed. In the example above, if the user entered the command: Osh> ! 3 The ‘ps’ command should be executed and echoed on the user’s screen. The command should also be placed in the history buffer as the next command. Error handling: The program should also manage basic error handling. For example, if there are no commands in the history, entering !! should result in a message “No commands in history.” Also, if there is no command corresponding to the number entered with the single !, the program should output "No such command in history."arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forward2. UNIX Shell and History Feature [20 points] This question consists of designing a C program to serve as a shell interface that accepts user commands and then executes each command in a separate process. A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user's next command: cat prog.c. The UNIX/Linux cat command displays the contents of the file prog.c on the terminal using the UNIX/Linux cat command and your program needs to do the same. osh> cat prog.c The above can be achieved by running your shell interface as a parent process. Every time a command is entered, you create a child process by using fork(), which then executes the user's command using one of the system calls in the exec() family (as described in Chapter 3). A C program that provides the general operations of a command-line shell can be seen below. #include #include #define MAX LINE 80 /* The maximum length command */ { int…arrow_forward
- Question#2: Design and implement a Java program using Abstract Factory and Singleton design patterns. The program displays date and time in one of the following two formats: Format 1: Date: MM/DD/YYYY Time: HH:MM:SS Format 2: Date: DD-MM-YYYY Time: SS,MM,HH The following is how the program works. In the beginning, the program asks the user what display format that she wants. Then the program continuously asks the user to give one of the following commands, and performs the corresponding task. Note that the program gets the current date and time from the system clock (use the appropriate Java date and time operations for this). 'd' display current date 't': display current time 'q': quit the program. • In the program, there should be 2 product hierarchies: "DateObject” and “TimeObject”. Each hierarchy should have format and format2 described above. • Implement the factories as singletons. • Run your code and attach screenshots of the results. • Draw a UML class diagram for the program.arrow_forward#include <linux/module.h> #include <linux/kernel.h> // part 2 #include <linux/sched.h> // part 2 extra #include <linux/hash.h> #include <linux/gcd.h> #include <asm/param.h> #include <linux/jiffies.h> void print_init_PCB(void) { printk(KERN_INFO "init_task pid:%d\n", init_task.pid); printk(KERN_INFO "init_task state:%lu\n", init_task.state); printk(KERN_INFO "init_task flags:%d\n", init_task.flags); printk(KERN_INFO "init_task runtime priority:%d\n", init_task.rt_priority); printk(KERN_INFO "init_task process policy:%d\n", init_task.policy); printk(KERN_INFO "init_task task group id:%d\n", init_task.tgid); } /* This function is called when the module is loaded. */ int simple_init(void) { printk(KERN_INFO "Loading Module\n"); print_init_PCB(); printk(KERN_INFO "Golden Ration Prime = %lu\n", GOLDEN_RATIO_PRIME); printk(KERN_INFO "HZ = %d\n", HZ); printk(KERN_INFO "enter jiffies = %lu\n", jiffies); return 0; } /* This function is called when the…arrow_forwardList at least five Operating Systems you know. What is the difference between the kernel mode and the user mode for the Linux? What is the system-call? Give an example of API in OS that use the system-call. What is cache? Why the CPU has cache? What is the difference between the Static Linking and Dynamic Linking when compiling the code.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Time Complexity Analysis - How To Calculate Running Time | InterviewBit; Author: InterviewBit;https://www.youtube.com/watch?v=--oxG4Q1PA0;License: Standard YouTube License, CC-BY