
COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8P
To determine
The place of the fourth object when the center of mass is at
( 0.0 , 0.0 ) m
.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
You are tasked with designing a parallel-plate capacitor using two square metal plates, eachwith an area of 0.5 m², separated by a 0.1 mm thick layer of air. However, to increase the capacitance,you decide to insert a dielectric material with a dielectric constant κ = 3.0 between the plates. Describewhat happens (and why) to the E field between the plates when the dielectric is added in place of theair.
Calculate the work required to assemble a uniform charge Q on a thin spherical shell of radiusR. Start with no charge and add infinitesimal charges dq until the total charge reaches Q, assuming thecharge is always evenly distributed over the shell’s surface. Show all steps.
Rod AB is fixed to a smooth collar D, which slides freely along the vertical guide shown in (Figure 1). Point C is
located just to the left of the concentrated load P = 70 lb. Suppose that w= 17 lb/ft. Follow the sign convention.
Part A
Figure
3 ft
-1.5 ft
√30°
1 of 1
Determine the normal force at point C.
Express your answer in pounds to three significant figures.
ΜΕ ΑΣΦ Η vec
Nc=
Submit
Request Answer
Part B
Determine the shear force at point C.
Express your answer in pounds to three significant figures.
VC=
ΜΕ ΑΣΦΗ
vec
Submit
Request Answer
Part C
Determine the moment at point C.
Express your answer in pound-feet to three significant figures.
Mc=
Ο ΑΣΦ Η
vec
Submit
Request Answer
Provide Feedback
?
?
lb
lb
?
lb-ft
Chapter 8 Solutions
COLLEGE PHYSICS,V.2
Ch. 8.4 - Using a screwdriver, you try to remove a screw...Ch. 8.4 - A constant net torque is applied to an object....Ch. 8.4 - The two rigid objects shown in Figure 8.21 have...Ch. 8.5 - Two spheres, one hollow and one solid, are...Ch. 8.6 - A horizontal disk with moment of inertia I1...Ch. 8.6 - If global warming continues, its likely that some...Ch. 8 - Why cant you put your heels firmly against a wall...Ch. 8 - Two point masses are the same distance R from an...Ch. 8 - If you see an object rotating, is there...Ch. 8 - (a) Is it possible to calculate the torque acting...
Ch. 8 - Why does a long pole help a tightrope walker stay...Ch. 8 - A person stands a distance R from a doors hinges...Ch. 8 - Orbiting spacecraft contain internal gyroscopes...Ch. 8 - If you toss a textbook into the air, rotating it...Ch. 8 - Stars originate as large bodies of slowly rotating...Ch. 8 - An object is acted on by a single nonzero force of...Ch. 8 - In a tape recorder, the tape is pulled past the...Ch. 8 - (a) Give an example in which the net force acting...Ch. 8 - Gravity is an example of a central force that acts...Ch. 8 - A cat usually lands on its feet regardless of the...Ch. 8 - A solid disk and a hoop are simultaneously...Ch. 8 - A mouse is initially at rest on a horizontal...Ch. 8 - The cars in a soapbox derby have no engines; they...Ch. 8 - A man opens a 1.00-m wide door by pushing on it...Ch. 8 - A worker applies a torque to a nut with a wrench...Ch. 8 - The fishing pole in Figure P8.3 makes an angle of...Ch. 8 - Find the net torque on the wheel in Figure P8.4...Ch. 8 - Figure P8.4 Calculate the net torque (magnitude...Ch. 8 - A dental bracket exerts a horizontal force of 80.0...Ch. 8 - A simple pendulum consists of a small object of...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - The Xanthar mothership locks onto an enemy cruiser...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Torque and the Two Conditions for Equilibrium 17....Ch. 8 - Prob. 18PCh. 8 - A cook holds a 2.00-kg carton of milk at arm's...Ch. 8 - A meter stick is found to balance at the 49.7-cm...Ch. 8 - Prob. 21PCh. 8 - A beam resting on two pivots has a length of L =...Ch. 8 - Prob. 23PCh. 8 - When a person stands on tiptoe (a strenuous...Ch. 8 - A 500.-N uniform rectangular sign 4.00 m wide and...Ch. 8 - A window washer is standing on a scaffold...Ch. 8 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 8 - A hungry bear weighing 700. N walks out on a beam...Ch. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Write the necessary equations of equilibrium of...Ch. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Four objects are held in position at the corners...Ch. 8 - If the system shown in Figure P8.37 is set in...Ch. 8 - A large grinding wheel in the shape of a solid...Ch. 8 - An oversized yo-yo is made from two identical...Ch. 8 - An approximate model for a ceiling fan consists of...Ch. 8 - A potters wheel having a radius of 0.50 m and a...Ch. 8 - A model airplane with mass 0.750 kg is tethered by...Ch. 8 - A bicycle wheel has a diameter of 64.0 cm and a...Ch. 8 - A 150.-kg merry-go-round in the shape of a...Ch. 8 - An Atwoods machine consists of blocks of masses m1...Ch. 8 - The uniform thin rod in Figure P8.47 has mass M =...Ch. 8 - A 2.50-kg solid, uniform disk rolls without...Ch. 8 - A horizontal 800.-N merry-go-round of radius 1.50...Ch. 8 - Four objectsa hoop, a solid cylinder, a solid...Ch. 8 - A light rod of length = 1.00 m rotates about an...Ch. 8 - A 240-N sphere 0.20 m in radius rolls without...Ch. 8 - A solid, uniform disk of radius 0.250 m and mass...Ch. 8 - A car is designed to get its energy from a...Ch. 8 - The top in Figure P8.55 has a moment of inertia of...Ch. 8 - A constant torque of 25.0 N m is applied to a...Ch. 8 - A 10.0-kg cylinder rolls without slipping on a...Ch. 8 - Use conservation of energy to determine the...Ch. 8 - A 2.00-kg solid, uniform ball of radius 0.100 m is...Ch. 8 - Each of the following objects has a radius of...Ch. 8 - A metal hoop lies on a horizontal table, free to...Ch. 8 - A disk of mass m is spinning freely at 6.00 rad/s...Ch. 8 - (a) Calculate the angular momentum of Earth that...Ch. 8 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 8 - A light, rigid rod of length = 1.00 m rotates...Ch. 8 - Haileys comet moves about the Sun in an elliptical...Ch. 8 - A student holds a spinning bicycle wheel while...Ch. 8 - A 60.0-kg woman stands at the rim of a horizontal...Ch. 8 - A solid, horizontal cylinder of mass 10.0 kg and...Ch. 8 - A student sits on a rotating stool holding two...Ch. 8 - The puck in Figure P8.71 has a mass of 0.120 kg....Ch. 8 - A space station shaped like a giant wheel has a...Ch. 8 - A cylinder with moment of inertia I1 rotates with...Ch. 8 - A particle of mass 0.400 kg is attached to the...Ch. 8 - Additional Problems A typical propeller of a...Ch. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - A uniform ladder of length L and weight w is...Ch. 8 - Two astronauts (Fig. P8.80), each haring a mass of...Ch. 8 - S This is a symbolic version of problem 80. Two...Ch. 8 - Two window washers. Bob and Joe, are on a...Ch. 8 - A 2.35-kg uniform bar of length = 1.30 m is held...Ch. 8 - A light rod of length 2L is free to rotate in a...Ch. 8 - Prob. 85APCh. 8 - A uniform thin rod of length L and mass M is free...Ch. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - A war-wolf, or trebuchet, is a device used during...Ch. 8 - A string is wrapped around a uniform cylinder of...Ch. 8 - The Iron Cross When a gymnast weighing 750 N...Ch. 8 - In an emergency situation, a person with a broken...Ch. 8 - An object of mass m1 = 4.00 kg is connected by a...Ch. 8 - Prob. 94APCh. 8 - A 3.2-kg sphere is suspended by a cord that passes...
Knowledge Booster
Similar questions
- Consider a uniformly charged ring of radius R with total charge Q, centered at the origin inthe xy-plane. Find the electric field (as a vector) at a point on the z-axis at a distance z above thecenter of the ring. Assume the charge density is constant along the ring.arrow_forward3) If the slider block C is moving at 3m/s, determine the angular velocity of BC and the crank AB at the instant shown. (Use equation Vs Vc wx fuc, then use equation Vs VA + Ve/athen write it in terms of w and the appropriate r equate the two and solve) 0.5 m B 1 m 60° A 45° vc = 3 m/sarrow_forward3) If the slider block C is moving at 3m/s, determine the angular velocity of BC and the crank AB at the instant shown. (Use equation Vs Vc wxf, then use equation V, VA + Va/Athen write it in terms of w and the appropriate r equate the two and solve) f-3marrow_forward
- Pls help ASAParrow_forwardPls help ASAParrow_forward14. A boy is out walking his dog. From his house, he walks 30 m North, then 23 m East, then 120 cm South, then 95 m West, and finally 10 m East. Draw a diagram showing the path that the boy walked, his total displacement, and then determine the magnitude and direction of his total displacement.arrow_forward
- Pls help ASAParrow_forward12. A motorboat traveling 6 m/s, West encounters a water current travelling 3.5 m/s, South. a) Draw a vector diagram showing the resultant velocity, then determine the resultant velocity of the motorboat. b) If the width of the river is 112 m wide, then how much time does it take for the boat to travel shore to shore? c) What distance downstream does the boat reach the opposite shore?arrow_forwardLake Erie contains roughly 4.00⋅10114.00⋅1011 m3 of water. Assume the density of this water is 1000. kg/m3 and the specific heat of water is 4186 J/kg˚C. It takes 2.31x10^19 J of energy to raise the temperature of that volume of water from 12.0 °C to 25.8 ˚C. An electric power plant can produce about 1110 MW. How many years would it take to supply this amount of energy by using the 1110 MW from an electric power plant?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning