Concept explainers
The Xanthar mothership locks onto an enemy cruiser with its tractor beam (Fig. P8.14); each ship is at rest in deep space with no propulsion following a devastating battle. The mothership is at x = 0 when its tractor beams are first engaged, a distance d = 215 xiles from the cruiser. Determine the x-position in xiles of the two spacecraft when the tractor beam has pulled them together. Model each spacecraft as a point particle with the mothership of mass M = 185 xons and the cruiser of mass m = 20.0 xons.
Figure P8.14
Trending nowThis is a popular solution!
Chapter 8 Solutions
COLLEGE PHYSICS,V.2
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
SEELEY'S ANATOMY+PHYSIOLOGY
Campbell Biology: Concepts & Connections (9th Edition)
Cosmic Perspective Fundamentals
HUMAN ANATOMY
Campbell Essential Biology (7th Edition)
- In the 1968 film 2001: A Space Odyssey, directed by Stanley Kubrick, some spacefarers make the journey to Jupiter on the ship Discovery One. C Inside the command module (the spherical dome at the front) there is a 10.86 m diameter centrifuge, which spins to provide artificial gravity during the long journey. If the centrifuge spins at a rate of 4.3 rotations per minute (rpm), how many g's would this be equivalent to? Hint: Earth's gravity is 1 g, where g = 9.8 m/s²; Discovery One's gravity would likely be less than or equal to 1 g.arrow_forwardThe center of a moon of mass m = 8 × 1023 kg is a distance D = 97 × 105 km from the center of a planet of mass M = 10.9 × 1025 kg. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero. a. Derive an expression for x. b. Calculate x in kilometers, given the variables in the beginning of the problem.arrow_forwardI am trying to find the gravitational pull of the 5 spheres on point P I am unsure how to do this.arrow_forward
- You are on a space station, in a circular orbit h = 500 km above the surface of the Earth. You complete your tasks several days early and must wait for the next mission from the surface to bring you home. After days of boredom, you decide to play some golf. Walking on the space station surface with magnetic shoes, you tee up a golf ball. You hit it with all of your might, sending it off with speed υrel, relative to the space station, in a direction parallel to the velocity vector of the space station at the moment the ball is hit. You notice that you then orbit the Earth exactly n = 2.00 times and you reach up and catch the golf ball as it returns to the space station. With what speed υrel was the golf ball hit?arrow_forwardThe class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view both attachments before answering. Please write step-by-step solution so I can fully understand.arrow_forwardSolve Using Work/Energy Methods :On an asteroid like Bennu, where NASA just landed a probe on October 20, a pressurized nitrogen canister is used to break rocks loose from the surface. One of those rocks is launched straight upward from the surface.(HCPCRN32387)If the initial speed of the rock is 520 m/s,determine the maximum height it reaches if the mass of the asteroid is only 5% that of the earth’s while the radius is 12% that of the earth’sarrow_forward
- Hunting a black hole. Observations of the light from a certain star indicate that it is part of a binary (two-star) system. This visible star has orbital speed v = 270 km/s, orbital period T= 15.0 days, and approximate mass m1 = 5.7M, where M, is the Sun's mass, 1.99 x 1030 kg. Assume that the visible star and its companion star, which is dark and unseen, are both in circular orbits (see the figure). Find the ratio of the approximate mass m2 of the dark star to Mg. Number i Unitsarrow_forwardA bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s. The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle with respect to the ground. The radius vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point where you are standing?arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forward
- Consider the Earth and the Moon as a two-particle system, a. How far from the center of the Earth is the gravitational field of this two-particle system zero? b. Sketch gravitational field vectors g along the line joining the Earth and the Moon. Indicate the point at which g=0 (Do not consider positions inside either object.)arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardConsider the Earth and the Moon as a two-particle system. a. Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon.) b. Plot the scalar component of g as a function of distance from the center of the Earth.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University