CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
7th Edition
ISBN: 9781319420994
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8C.3E
(a)
Interpretation Introduction
Interpretation:
The valence electronic configuration alkali metals atom has to be given.
(b)
Interpretation Introduction
Interpretation:
The reason why alkali metals are good reducing agent has to be explained on the basis of electronic configuration, ionization energy and hydration of their ions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Which poisonous gas is evolved when white phosphorus is heated with Cone. NaOH solution? Write the chemical equation.
(b) Write the formula of first noble gas compound prepared by N. Bartlett. What inspired N. Bartlett to prepare this compound?
(c) Fluorine is a stronger oxidising agent than chlorine. Why?
(d)Write one use of chlorine gas.
Consider the series of reactions to synthesize the alum (KAl(SO4 )2 · xH2O(s)) from the introduction. Assuming an excess of the other reagents, from one mole of potassium hydroxide KOH, how many moles of alum will be produced?
The molecular weight of sperm whale myoglobin is 17.8 kDa.17.8 kDa. The myoglobin content of sperm whale muscle is about 80 g · kg−1.80 g · kg−1. In contrast, the myoglobin content of some human muscles is about 8 g · kg−1.8 g · kg−1.
Compare the amounts of O2O2 bound to myoglobin in human muscle and in sperm whale muscle. Assume that the myoglobin is saturated with O2,O2, and that the molecular weights of human and sperm whale myoglobin are the same.
How much O2O2 is bound to myoglobin in human muscle?
How much O2O2 is bound to myoglobin in whale muscle?
The amount of oxygen dissolved in tissue water at 37°C37°C is about 3.5×10−5 M.3.5×10−5 M. What is the ratio of myoglobin‑bound oxygen to dissolved oxygen in the tissue water of sperm whale muscle?
Chapter 8 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
Ch. 8 - Prob. 8A.1ASTCh. 8 - Prob. 8A.1BSTCh. 8 - Prob. 8A.2ASTCh. 8 - Prob. 8A.2BSTCh. 8 - Prob. 8A.1ECh. 8 - Prob. 8A.2ECh. 8 - Prob. 8A.3ECh. 8 - Prob. 8A.4ECh. 8 - Prob. 8A.5ECh. 8 - Prob. 8A.6E
Ch. 8 - Prob. 8A.7ECh. 8 - Prob. 8A.8ECh. 8 - Prob. 8A.9ECh. 8 - Prob. 8A.10ECh. 8 - Prob. 8A.11ECh. 8 - Prob. 8A.12ECh. 8 - Prob. 8A.13ECh. 8 - Prob. 8A.14ECh. 8 - Prob. 8A.15ECh. 8 - Prob. 8A.16ECh. 8 - Prob. 8A.17ECh. 8 - Prob. 8A.18ECh. 8 - Prob. 8A.19ECh. 8 - Prob. 8A.20ECh. 8 - Prob. 8B.1ASTCh. 8 - Prob. 8B.1BSTCh. 8 - Prob. 8B.2ASTCh. 8 - Prob. 8B.2BSTCh. 8 - Prob. 8B.1ECh. 8 - Prob. 8B.2ECh. 8 - Prob. 8B.3ECh. 8 - Prob. 8B.4ECh. 8 - Prob. 8B.5ECh. 8 - Prob. 8B.6ECh. 8 - Prob. 8B.7ECh. 8 - Prob. 8B.8ECh. 8 - Prob. 8C.1ASTCh. 8 - Prob. 8C.1BSTCh. 8 - Prob. 8C.2BSTCh. 8 - Prob. 8C.1ECh. 8 - Prob. 8C.2ECh. 8 - Prob. 8C.3ECh. 8 - Prob. 8C.4ECh. 8 - Prob. 8C.5ECh. 8 - Prob. 8C.6ECh. 8 - Prob. 8D.1ASTCh. 8 - Prob. 8D.1BSTCh. 8 - Prob. 8D.2ASTCh. 8 - Prob. 8D.2BSTCh. 8 - Prob. 8D.1ECh. 8 - Prob. 8D.2ECh. 8 - Prob. 8D.3ECh. 8 - Prob. 8D.4ECh. 8 - Prob. 8D.5ECh. 8 - Prob. 8D.6ECh. 8 - Prob. 8D.7ECh. 8 - Prob. 8D.8ECh. 8 - Prob. 8E.1ASTCh. 8 - Prob. 8E.1BSTCh. 8 - Prob. 8E.2ASTCh. 8 - Prob. 8E.2BSTCh. 8 - Prob. 8E.1ECh. 8 - Prob. 8E.2ECh. 8 - Prob. 8E.3ECh. 8 - Prob. 8E.4ECh. 8 - Prob. 8E.5ECh. 8 - Prob. 8E.6ECh. 8 - Prob. 8E.7ECh. 8 - Prob. 8E.8ECh. 8 - Prob. 8F.1ASTCh. 8 - Prob. 8F.1BSTCh. 8 - Prob. 8F.2ASTCh. 8 - Prob. 8F.2BSTCh. 8 - Prob. 8F.1ECh. 8 - Prob. 8F.2ECh. 8 - Prob. 8F.3ECh. 8 - Prob. 8F.4ECh. 8 - Prob. 8F.5ECh. 8 - Prob. 8F.6ECh. 8 - Prob. 8G.1ASTCh. 8 - Prob. 8G.1BSTCh. 8 - Prob. 8G.2ASTCh. 8 - Prob. 8G.2BSTCh. 8 - Prob. 8G.1ECh. 8 - Prob. 8G.2ECh. 8 - Prob. 8G.3ECh. 8 - Prob. 8G.4ECh. 8 - Prob. 8G.5ECh. 8 - Prob. 8G.6ECh. 8 - Prob. 8G.7ECh. 8 - Prob. 8G.8ECh. 8 - Prob. 8G.9ECh. 8 - Prob. 8G.10ECh. 8 - Prob. 8H.1ASTCh. 8 - Prob. 8H.1BSTCh. 8 - Prob. 8H.2ASTCh. 8 - Prob. 8H.2BSTCh. 8 - Prob. 8H.1ECh. 8 - Prob. 8H.2ECh. 8 - Prob. 8H.3ECh. 8 - Prob. 8H.4ECh. 8 - Prob. 8H.5ECh. 8 - Prob. 8H.6ECh. 8 - Prob. 8H.7ECh. 8 - Prob. 8H.8ECh. 8 - Prob. 8H.10ECh. 8 - Prob. 8H.11ECh. 8 - Prob. 8H.12ECh. 8 - Prob. 8I.1ASTCh. 8 - Prob. 8I.1BSTCh. 8 - Prob. 8I.2ASTCh. 8 - Prob. 8I.2BSTCh. 8 - Prob. 8I.1ECh. 8 - Prob. 8I.2ECh. 8 - Prob. 8I.3ECh. 8 - Prob. 8I.5ECh. 8 - Prob. 8I.6ECh. 8 - Prob. 8I.7ECh. 8 - Prob. 8I.8ECh. 8 - Prob. 8I.9ECh. 8 - Prob. 8I.10ECh. 8 - Prob. 8I.11ECh. 8 - Prob. 8I.12ECh. 8 - Prob. 8I.13ECh. 8 - Prob. 8I.14ECh. 8 - Prob. 8I.15ECh. 8 - Prob. 8I.16ECh. 8 - Prob. 8J.1ASTCh. 8 - Prob. 8J.1BSTCh. 8 - Prob. 8J.1ECh. 8 - Prob. 8J.2ECh. 8 - Prob. 8J.3ECh. 8 - Prob. 8J.4ECh. 8 - Prob. 8J.5ECh. 8 - Prob. 8J.6ECh. 8 - Prob. 8J.7ECh. 8 - Prob. 8J.8ECh. 8 - Prob. 8.3ECh. 8 - Prob. 8.4ECh. 8 - Prob. 8.5ECh. 8 - Prob. 8.6ECh. 8 - Prob. 8.7ECh. 8 - Prob. 8.8ECh. 8 - Prob. 8.9ECh. 8 - Prob. 8.11ECh. 8 - Prob. 8.12ECh. 8 - Prob. 8.13ECh. 8 - Prob. 8.14ECh. 8 - Prob. 8.15ECh. 8 - Prob. 8.17ECh. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - Prob. 8.20ECh. 8 - Prob. 8.21ECh. 8 - Prob. 8.22ECh. 8 - Prob. 8.25ECh. 8 - Prob. 8.29ECh. 8 - Prob. 8.31CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- When carbon dioxide dissolves in water it reacts to produce carbonic acid, H2CO3(aq), which can ionize in two steps. H2CO3(aq)HCO3(aq)+H+(aq)Kc1=4.2107HCO3(aq)CO32(aq)+H+(aq)Kc2=4.81011 Calculate the equilibrium constant for the reaction H2CO3(aq)CO32(aq)+2H+(aq)arrow_forwardThe reaction of calcium hydride, CaH2, with water can be characterized as a Lewis acid-base reaction: CaH2(s)+2H2O(l)Ca(OH)2(aq)+2H2(g) Identify the Lewis acid and the Lewis base among the reactants. The reaction is also an oxidation-reduction reaction. Identify the oxidizing agent, the reducing agent, and the changes in oxidation number that occur in the reaction.arrow_forwardPhosphate buffers are important in regulating the pH of intracellular fluids. If the concentration ratio of H2PO4/HPO42 in a sample of intracellular fluid is 1.1: 1, what is the pH of this sample of intracellular fluid? H2PO4(aq)HPO42(aq)+H+(aq)Ka=6.2108arrow_forward
- Consider the series of reactions to synthesize the alum (KAl(SO4 )2 · xH2O(s)) from the introduction. (a) Assuming an excess of the other reagents, from one mole of aluminum Al (s), how many moles of alum will be produced? (b) Assuming an excess of the other reagents, from one mole of potassium hydroxide KOH, how many moles of alum will be produced? (c) Assuming an excess of the other reagents, from one mole of sulfuric acid H2SO4 , how many moles of alum will be produced? (d) If you start the synthesis with 1.00 g of Al, 40.0 mL of 1.50 M KOH, and 20.0 mL of 9.00 M H2SO4 , which of the three will be the limiting reagent? (e) Assuming that the product is anhydrous (that there are no waters of hydration), calculate the theoretical yield of alum, in grams, based on the amounts of reagents in part (d). 3. Consider the nickel salt: (NH4 )2Ni(SO4 )2 ·y H2O (Ammonium Nickel Sulfate Hydrate), where y is the number of coordinated waters. (a) Assuming that the product is anhydrous (y = 0),…arrow_forwardA sample of 70.5 mg of potassium phosphate is added to 15.0 mL of 0.050 M silver nitrate, resulting in the formation of aprecipitate. (a) Write the molecular equation for the reaction. (b) What is the limiting reactant in the reaction? (c) Calculatethe theoretical yield, in grams, of the precipitate that forms.arrow_forwardWould you expect an aqueous solution of manganese (VII) oxide to have a ph greater or less than 7.0? Justify your answerarrow_forward
- Phosphoric acid, one of the acids used in some cola drinks, is produced by the reaction of phosphorus(V) oxide, an acidic oxide, with water. Phosphorus(V) oxide is prepared by the combustion of phosphorus.(a) Write the empirical formula of phosphorus(V) oxide.(b) What is the molecular formula of phosphorus(V) oxide if the molar mass is about 280.(c) Write balanced equations for the production of phosphorus(V) oxide and phosphoric acid.(d) Determine the mass of phosphorus required to make 1.00 × 104 kg of phosphoric acid, assuming a yield of 98.85%.arrow_forwardWrite the balanced net ionic equation for the reaction of hydrogen sulfide (H2S) with bromate ions, BrO3-, in acidic solution to form sulfur ions and bromide ions. How many H+ are there in the balanced equation?arrow_forwardThe Properties, Reactions and Applications of Oxygen Explain the classification of oxides as basic, acid, amphoteric and neutral. How can we predict whether an oxide will be acidic or basic based on its composition? Give an example of an amphoteric oxide and give two typical reactionsarrow_forward
- Complete and balance the following acid-base equations:(a) A solution of HClO4 is added to a solution of LiOH.(b) Aqueous H2SO4 reacts with NaOH.(c) Ba(OH)2 reacts with HF gas.arrow_forwardWrite the balanced chemical equation for conversion of Al(s) to KAl(SO4)2·12H2O(s) in aqueous solution.arrow_forwardSelect one of the alkali metals and write a balanced chemical equation for it's reaction with chlorine. Is the reaction likely to be exothermic or endothermic? Is the product ionic or molecular?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning