Concept explainers
(a)
Interpretation:
Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is a natural gas air flame of temperature 1800 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state
(b)
Interpretation:
Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is a hydrogen - oxygen flame of 2950K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state.
(c)
Interpretation:
Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is an inductively −coupled plasma source of 7250 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state.

Trending nowThis is a popular solution!

Chapter 8 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Can I get helpp drawing my arrowsarrow_forwardWhich of the m/z values corresponds to the base peak in the mass spectrum shown? 100 80 A. 45 B. 44 C. 29 D. 15 Intensity 20 0 10 20 30 40 B- m/z -8 50 E. 30 Which of the m/z values correspond to the molecular ion for the compound shown? A. 18 B. 82 OH C. 100 D. 102 E. 103arrow_forwardCan someone help me with drawing my arrows.arrow_forward
- I'm having trouble with converting lewis diagrams into VSEPR diagrams. I currently have this example of C2BrCl3 which I want to turn into a lewis structure, but I'm not sure what steps I need to do in order to do so. I have the table written down, however, there's two central atoms so what would I do? There seems to be 4 electron domains on the carbon atom and no lone pairs so it would seem like this shape would be tetrahedral. Here's what I have now. Thanks!arrow_forwardWe discussed the solid phase resin using in peptide synthesis. Provide a mechanism, for its formation. DRAW THE MECHANISM.arrow_forwardPlease help. Every time I've asked an expert in the past, it's been wrong :(arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
