FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
See photo below
Please help me I'm struggling with this thermodynamics problem.
Determine:
a)Work of the compressor(kW)
b)COP of the cycle
Knowledge Booster
Similar questions
- Rankine Cycle (Thermodynamics) Show the illustration diagram and complete and step by step solution.arrow_forwardPrinciples attributed in power plant design: complete integration B customer need available household needarrow_forward4. Superheated steam at 18 MPa, 560°C, enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.06 bar, and saturated liquid leaves the condenser at 0.06 bar. The pressure is then increased by a pump to the boiler pressure at 18 MPa. The turbine and pump efficiencies are 82 and 77%, respectively. For the cycle, determine (a) The net-work per unit mass of steam flow, in kJ/kg (b) Heat transfer to steam passing through the boiler, in kJ/kg (c) The thermal efficiency of the cycle (d) Heat transfer to cooling water passing through the condenser, in kJ/kg. (e) Draw complete T-s diagramarrow_forward
- 1. An industrial company operates a steam power plant with reheat and regeneration. The steam enters a turbine at 115 bar and 550 °C and expands to the condenser at 0.10 bar. Steam leaves the first stage at 30 bar and then reheat at 470 °C before entering the second stage turbine. At the second stage turbine a mass is extracted to the open feed water heater at 6 bar. Both section of the turbine (first stage and second stage) has adiabatic efficiency of 93 %. A condensate pump exists between the main condenser and the heater. Another pump lies between the heater and condensate outlet line from the heater (condensed extracted steam) a. Compute the enthalpies at each point b. Compute for the mass extracted from the second stage turbine to the open feed water heater c. Efficiency of the cycle.arrow_forwardThe figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.arrow_forwardI only need help with part d. The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.arrow_forward
- Steam is supplied to a two-stage turbine at 40 bar and 350 o It expands in the first turbine until it is just dry saturated, then it is reheated to 350 oC and expanded through the second stage turbine; the isentropic efficiencies of the first and second stage turbines are 84 % and 78 % respectively. The condenser pressure is 0.035 bar. Sketch the process on a T-s diagram and calculate; i. The work output and heat supplied per kg of steam for the plant assuming ideal processes ii. The thermal efficiency of the cycle iii. The specific steam consumptionarrow_forwardThe property data for a steady state vapor-compression refrigeration cycle with refrigerant 134a as the working fluid are given in the table below. The refrigeration capacity of the cycle is 9.4 tons and the refrigerant mass flow rate is 12.4 kg/min. Determine the net changes in flow exergy rate of the refrigerant passing through the evaporator A (Ed) evap and condenser A(Ed) cond, both in kW. Let po = 1 bar, To = 24°C. (a) A (Ed) evap = Ex: 7.77 kW (b) A (Ed) cond = Ex: 0.999 kW T3, P3 = P2 == Qout 3 2 State p (bar) T (°C) h (kJ/kg) s (kJ/kg. K) www P2 1 1.4 -10.0 243.4 0.9606 2 7.0 64.0 300.8 1.0303 3 7.0 24.0 82.90 0.3113 4 1.4 -18.8 82.90 0.3301 4 == Expansion valve P4 Pl Evaporator ww Condenser Compressor W T₁, Pi marrow_forward1.10Water is the working fluid in a reheat-regenerative Rankine cycle with one closed feedwater heater and one open feedwater heater. Steam enters the turbine at 1400 lbf/in.2 and 1000°F and expands to 500 lbf/in.2, where some of the steam is extracted and diverted to the closed feedwater heater. Condensate exiting the closed feedwater heater as saturated liquid at 500 lbf/in.2 undergoes a throttling process to 120 lbf/in.2 as it passes through a trap into the open feedwater heater.The feedwater leaves the closed feedwater heater at 1400 lbf/in.2 and a temperature equal to the saturation temperature at 500 lbf/in.2 The remaining steam is reheated to 900°F before entering the second-stage turbine, where it expands to 120 lbf/in.2 Some of the steam is extracted and diverted to the open feedwater heater operating at 120 lbf/in.2 Saturated liquid exits the open feedwater heater at 120 lbf/in.2The remaining steam expands through the third-stage turbine to the condenser pressure of 3.5…arrow_forward
- I need the answer as soon as possiblearrow_forwardDescribe the Exergy Destruction During Expansion of Steam.arrow_forwardOn my online homework, it says the answer for part b, 993.2 kW and part c, 360.06 are incorrect. I also need help with part d. The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY