Concept explainers
(a)
Interpretation:
The condensed ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
Paramagnetism is a form of magnetism where the materials are weakly attracted by an externally applied magnetic field. It is due to the presence of unpaired electrons in the materials so all the atoms with incompletely filled atomic orbital are paramagnetic.
The intensity of paramagnetism increases with the increase in the number of unpaired electrons. Due to their spin, the unpaired electrons have a magnetic dipole moment and act like tiny magnets.
(b)
Interpretation:
The condensed ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
Paramagnetism is a form of magnetism where the materials are weakly attracted by an externally applied magnetic field. It is due to the presence of unpaired electrons in the materials so all the atoms with incompletely filled atomic orbital are paramagnetic.
The intensity of paramagnetism increases with the increase in the number of unpaired electrons. Due to their spin, the unpaired electrons have a magnetic dipole moment and act like tiny magnets.
(c)
Interpretation:
The condensed ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
Paramagnetism is a form of magnetism where the materials are weakly attracted by an externally applied magnetic field. It is due to the presence of unpaired electrons in the materials so all the atoms with incompletely filled atomic orbital are paramagnetic.
The intensity of paramagnetism increases with the increase in the number of unpaired electrons. Due to their spin, the unpaired electrons have a magnetic dipole moment and act like tiny magnets.
(d)
Interpretation:
The condensed ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
Paramagnetism is a form of magnetism where the materials are weakly attracted by an externally applied magnetic field. It is due to the presence of unpaired electrons in the materials so all the atoms with incompletely filled atomic orbital are paramagnetic.
The intensity of paramagnetism increases with the increase in the number of unpaired electrons. Due to their spin, the unpaired electrons have a magnetic dipole moment and act like tiny magnets.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 8 Solutions
CHEMISTRY/ALEKS AND CONNECT
- Given the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forwardMatch each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)