
Concept explainers
(a)
Interpretation: For the given set of unbalanced chemical equation, chemical statement has to be given.
Concept Introduction:
- Chemical equation is the symbolic representation of a
chemical reaction using thesymbols of elements. Chemical equation must be balanced on both sides (reactant side and product side) of the reaction. - Chemical statement is the representation of chemical equation with words. The chemical equation can be easily read if it is give as statements. The statement tells about the reaction happening in the chemical equation.
- While writing the chemical statement the "plus" sign present on reactant side or product side can be written using "and". Similarly, the arrow can be written using the phrases "react(s) to produce", "gives to" and "forming".
To write: The chemical statement for the given set of unbalanced chemical equation.
(b)
Interpretation: For the given set of unbalanced chemical equation, chemical statement has to be given.
Concept Introduction:
- Chemical equation is the symbolic representation of a chemical reaction using the symbols of elements. Chemical equation must be balanced on both sides (reactant side and product side) of the reaction.
- Chemical statement is the representation of chemical equation with words. The chemical equation can be easily read if it is give as statements. The statement tells about the reaction happening in the chemical equation.
- While writing the chemical statement the "plus" sign present on reactant side or product side can be written using "and". Similarly, the arrow can be written using the phrases "react(s) to produce", "gives to" and "forming".
To write: The chemical statement for the given set of unbalanced chemical equation.
(c)
Interpretation: For the given set of unbalanced chemical equation, chemical statement has to be given.
Concept Introduction:
- Chemical equation is the symbolic representation of a chemical reaction using the symbols of elements. Chemical equation must be balanced on both sides (reactant side and product side) of the reaction.
- Chemical statement is the representation of chemical equation with words. The chemical equation can be easily read if it is give as statements. The statement tells about the reaction happening in the chemical equation.
- While writing the chemical statement the "plus" sign present on reactant side or product side can be written using "and". Similarly, the arrow can be written using the phrases "react(s) to produce", "gives to" and "forming".
To write: The chemical statement for the given set of unbalanced chemical equation.
(d)
Interpretation: For the given set of unbalanced chemical equation, chemical statement has to be given.
Concept Introduction:
- Chemical equation is the symbolic representation of a chemical reaction using the symbols of elements. Chemical equation must be balanced on both sides (reactant side and product side) of the reaction.
- Chemical statement is the representation of chemical equation with words. The chemical equation can be easily read if it is give as statements. The statement tells about the reaction happening in the chemical equation.
- While writing the chemical statement the "plus" sign present on reactant side or product side can be written using "and". Similarly, the arrow can be written using the phrases "react(s) to produce", "gives to" and "forming".
To write: The chemical statement for the given set of unbalanced chemical equation.
(e)
Interpretation: For the given set of unbalanced chemical equation, chemical statement has to be given.
Concept Introduction:
- Chemical equation is the symbolic representation of a chemical reaction using the symbols of elements. Chemical equation must be balanced on both sides (reactant side and product side) of the reaction.
- Chemical statement is the representation of chemical equation with words. The chemical equation can be easily read if it is give as statements. The statement tells about the reaction happening in the chemical equation.
- While writing the chemical statement the "plus" sign present on reactant side or product side can be written using "and". Similarly, the arrow can be written using the phrases "react(s) to produce", "gives to" and "forming".
To write: The chemical statement for the given set of unbalanced chemical equation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
Chemistry: Atoms First V1
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning





