
(a)
The available shear strength of the connection based on Allowed Stress Design.

Answer to Problem 8.6.3P
The available shear strength of the connection based on Allowed Stress Design.
is
Explanation of Solution
Given:
A
The
Calculation:
The available shear strength of the connections is least of the following,
- Strength of the bolt.
- Plates shear yielding strength.
- Plate shear rupture strength.
- Plates block shear strength.
- Strength of the weld.
Write the expression to obtain the bolt shear strength.
Here, the cross section area of the unthreaded part of the bolt is
Substitute
The shear strength of the
Write the expression to obtain the bearing strength of the bolts on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the two bolts adjacent to the plate.
Write the expression to obtain the bearing strength of the bolts other than on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the two such bolts is,
Thus, the total bearing strength of the bolts is:
Thus, the bolt strength is least of the shear strength and bearing strength of the bolts.
From Equations (II) and (V),
Write the expression to obtain the plate shear yielding strength.
Here, the gross cross section area of the plate perpendicular to the applied load is
Substitute
Write the expression to obtain the shear rupture strength of the plate.
Here, the net area along the shear surface is
Substitute,
Write the expression to obtain the block shear strength of the plate.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the design shear strength of weld.
Here, the size of the fillet weld is
Substitute
Further solve the above equation.
For
Write the expression to obtain the shear yielding strength for the base metal for
Here, the thickness of the base metal is
Substitute
Write the expression to obtain the shear rupture strength of the base metal.
Here, the thickness of the base metal is
Substitute
Write the expression to obtain the yielding strength for the base metal.
Here, the thickness of the base metal is
Substitute
From Equation (VI), (VIII), (X) and (XXI), the least value will be the available shear strength of the connections.
Thus,
Conclusion:
Thus, the available shear strength of the connection is
(b)
The flexural strength of the member based on Allowed Stress Design.

Answer to Problem 8.6.3P
The available flexural strength of the member based on Allowed Stress Design.
is
Explanation of Solution
Calculation:
The available flexural strength of the connections is least of the following,
- Strength of the bolt.
- Tension on gross section of the plate.
- Tension on net section of the plate.
- The block shear of the flange plate.
- The block shear of the beam flange.
- The compression of the bottom flange plate.
Write the expression to obtain the tension force due to yielding of the gross section area of the plate.
Here, the gross sectional area of the plate is
Substitute,
Write the expression to obtain the tension rupture strength of the plate.
Here, the net area of the plate is
Substitute,
Write the expression to obtain the bolt shear strength.
Here, the cross section area of the unthreaded part of the bolt is
Substitute
The shear strength of the
Write the expression to obtain the bearing strength of the bolts on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the
Write the expression to obtain the bearing strength of the bolts other than on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for
Thus, the total bearing strength of the bolts is:
Thus, the bolt strength is least of the shear strength and bearing strength of the bolts.
From Equation (XXVII) and (XXX),
Write the expression to obtain the block shear strength of the plate.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the block shear strength of the beam flange.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the compressive strength of the member.
Here, the safety factor for compression is
Substitute,
From Equations (XXIII), (XXV), (XXXI), (XXXV) and (XXXVII), the least value will be the tension at the net section as
Thus,
Write the expression to obtain the moment transferred by flange plate.
Here, lever arm distance is
Substitute
Conclusion:
Thus, the available flexural strength of the member is
Want to see more full solutions like this?
Chapter 8 Solutions
STEEL DESIGN (LOOSELEAF)
- Calculate ALL nodal displacements and ALL the member forces in the truss. Please use the ID's noted in the truss diagramarrow_forwardQ3. In a water flood operation in reservoir A, water is being distributed to severalinjection wells from a common injection system; that is, water is supplied to all thewells at approximately the same well head pressure. Routine measurement of theindividual well injection rates by the team of field operators showed that one well wasreceiving approximately 45% more than its neighbours. The sum of the kh productsfor all of the injection wells were approximately the same depth. As a member of theteam, explain:What are the possible causes of the abnormally high injection rate in this well, andwhat production logs or other tests might be run to further diagnose the problem andplan remedial action?arrow_forwardQuestion 1 20 pts Test data on the bending strength of construction wood poles of various diameter are presented below assuming the same length. Kip- 1000 lbf. Using the following data with 2nd order Newton polynomial interpolation, we want to determine the strength of the material for x=4.5 in. Which data point will be used as x? After you found x0, enter the value of x-xo in the solution. Answer shall be in one decimal place. Distance (in) 2.6 1.5 8.3 2.8 5.7 Strength (kips) 100 200 300 400 500arrow_forward
- Solve pleasearrow_forwardsolve all of the last names from A-K to please for example use k=100k/in , m =1000lb/g . use el centro (2nd picture ) to solve the questions. Thank you for your help! for the following questions ignore that last name and just solve it pleae: Verify the modes that are orthogonal Normalize the first mode uisng electro with 2%damping, Determine Sa&Sd only for the first modearrow_forwardFor question 2 do 2% please. Use El centro spectrum to answer the secon question please. Thank you for your help!arrow_forward
- solve pleasearrow_forwardA mechanism for pushing small boxes from an assembly line onto a conveyor belt is shown with arm OD and crank CB in their vertical positions. For the configuration shown, crank CB has a constant clockwise angular velocity of 0.6π rad/s. Determine the acceleration QE of E (positive if to the right, negative if down). 450 mm 215 mm 565 mm A 185 mm 105 mm 110185. mm mm Answer: a = i B 40 mm E m/s²arrow_forwardPlease answer the following questions in the picture, use the second picture to answer some of the questions. I appreciate your help! Explain step by step, thank you!arrow_forward
- Question 5. Three pipes A, B, and C are interconnected as in Fig. 2. The pipe characteristics are given below. Find the rate at which water will flow in each pipe. Find also the pressure at point P. (Neglect minor losses) Pipe D (in) L (ft) f A 6 2000 0.020 B 4 1600 0.032 C 8 3000 0.02 -El. 200 ft P -El. 120 ft B Fig. 2 -El. 50 ft.arrow_forwardcalculate all nodal displacementts and all the member forces of the trussarrow_forwardNOTE: Use areal methods only for V,M,N diagrams(Do NOT use the equations) (also draw the N diagram(s) for the entire structure)arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
