
(a)
Interpretation:
The draw force needs to be calculated considering no friction of copper wire.
Concept Introduction:
Cold working is the

Answer to Problem 8.53P
The draw force required for original copper wire is 6096.65 N.
Explanation of Solution
Given Information:
1 inch = 2.54 cm
% cold work is given by the following relation:
Here,
Equation (1) becomes,
Thus at 30.56 % cold work from the graph yield strength of copper = 138 MPa.
Now, drag force (F) is calculated from the following formula,
Here,
Equation (2) becomes,
(b)
Interpretation:
Whether the drawn wire break in the drawing wire or not needs to be determined.
Concept Introduction:
Cold working is the mechanical process in which matrial is plastically deformed under recrystallization temperature.

Answer to Problem 8.53P
The stress after the wire is drawn under cold work is 198.71MPa which is less than actual yield strength 370MP. Hence wire will not break.
Explanation of Solution
Given Information:
1 inch = 2.54 cm
Thus drag force F of wire of copper is 6096.65 N
Final diameter = 0.625 cm
The stress (s) on the wire after cold work is given by the following relation:
Yield strength material will not break.
Want to see more full solutions like this?
Chapter 8 Solutions
Essentials of Materials Science and Engineering, SI Edition
- Find Laplace inverse for -25 -1 e S-1arrow_forwardThis question and its solution. Is the solution correct? If the solution is correct, assume that let R2 = 20 and a=500 . If it is wrong, solve it in your own way, away from the sources, and explain to me in detail with a pen and paper, please.arrow_forwardcan you compute the values inside the blue circles using the data from the plan above them? Please disregard the values (data/numbers) inside the circles.arrow_forward
- I don't want an AI solution please.arrow_forwardVehicle begin to arrive at a parking lot at 6:00 am at a rate of 8 per minute. No vehicles arrivefrom from 6:20 to 6:30 am. From 6:30 am on vehicle arrive at a rate of 2 veh/min. The parkinglot attendant processes incoming vehicles at a rate of 4 veh/min throughout day. AssumingD/D/1 queue, determine total vehicle delayarrow_forwardMaterial Sciencearrow_forward
- The average output voltage is found from Vac = = 2 2π/6 3√3 π -V #16 m √√3V™ cos ot d (ot) 0 = 1.654Vm m where Vm, is the peak phase voltage. I want detailed integration steps and how you reached this result.arrow_forwardElectronic devices found in integrated circuits are composed of very high purity silicon to which has been added small and very controlled concentrations of elements found in Groups IIIA and VA of the periodic table. For Si that has had added 9.1 × 1021 atoms per cubic meter of antimony compute (a) the weight percent and (b) the atom percent of Sb present. (Hint: use Equation 100 C₁ = 1 + NAP2 N1A₁ P2 P1 (a) 0.00636 %wt (b) i 0.0182 %atarrow_forwardUse the binary diagram, 45 line above and material balance to solve the One thousand kg/h of a (50-50 wt%) acetone-in-water solution is to be extracted at 25C in a continuous, countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10 wt% acetone. Using the following equilibrium data, determine with an equilateral-triangle diagram: a the minimum flow rate of solvent; b. the number of stages required for a solvent rate equal to 1.5 times minimum, and composition of each streamleaving each stage. Repeat the calculation of (a) and (b) if the solvent used has purity 93wt% (4wr% acetone, 3wt% water impurities) acetone 0.6 water 0.13 1,1,2-trichloroethane 0.27 Raffinate. Weight Fraction Acetone Extract. Weight Fraction Acetone 0.5 0.04 0.46 0.44 0.56 0.4 0.03 0.57 0.29 0.40 0.3 0.02 0.681 0.12 0.18 0.2 0.015 0.785 0.0 0.0 0.1 0.01 0.89 0.55 0.35 0.1 0.5 0.43 0.07 0.4 0.57 0.03 0.3 0.68 0.02 0.2 0.79 0.01 0.1 0.895 0.005arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





