Connect for Chemistry
13th Edition
ISBN: 9781260161854
Author: Raymond Chang, Jason Overby
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.48QP
Interpretation Introduction
Interpretation: Larger species among
Concept Introduction:
Ionic radius is the distance between the atomic nucleus and outermost shell having electrons of an ion. From the ionic radius, the size of ions can be visualized
When an atom gets converted to a cation, the charge of nucleus remains the same while the number of electrons decreases. This decreases the repulsion and hence the electron cloud reduces which results in the decrease in ionic radius.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write the electron configuration for the element titanium,Ti. How many valence electrons does this atom possess?
1) In the past you have learned that bismuth (Bi) is a metal that can lose 3 electrons and
become Bi* . Actually, Bismuth is able to form 3 ions! The charges for each of the ions are
3-, 3+ and 5+. Propose electron configurations (long form only) for each ion. Explain the
reasoning behind your configurations. Be sure to include the electron configuration of the
neutral atom.
Atom/
Electron Configuration (shorthand only)
Reasoning for electron
configuration of each ion
Ion
Bi
(neutral)
Bi3-
Bi3+
Bi5+
How many valence electrons does an atom of any element in group 6A have ?
Chapter 8 Solutions
Connect for Chemistry
Ch. 8.2 - An atom of a certain element has 20 electrons. (a)...Ch. 8.2 - Identify the elements that fit the following...Ch. 8.2 - What is the ground-state electron configuration...Ch. 8.3 - Prob. 2PECh. 8.3 - Prob. 3PECh. 8.3 - Prob. 1RCFCh. 8.3 - Arrange the following species in order of...Ch. 8.3 - Identify the spheres shown here with each of the...Ch. 8.4 - (a) Which of the following atoms should have a...Ch. 8.4 - Arrange the following atoms in order of increasing...
Ch. 8.4 - Label the plots shown here for the first, second,...Ch. 8.5 - Is it likely that Ar will form the anion Ar?Ch. 8.5 - Arrange the following atoms in order of increasing...Ch. 8.5 - Why is it possible to measure the successive...Ch. 8.6 - Classify the following oxides as acidic, basic, or...Ch. 8.6 - Prob. 1RCFCh. 8 - Briefly describe the significance of Mendeleevs...Ch. 8 - What is Moseleys contribution to the modern...Ch. 8 - Describe the general layout of a modern periodic...Ch. 8 - What is the most important relationship among...Ch. 8 - Prob. 8.5QPCh. 8 - Prob. 8.6QPCh. 8 - Prob. 8.7QPCh. 8 - What is a representative element? Give names and...Ch. 8 - Prob. 8.9QPCh. 8 - Prob. 8.10QPCh. 8 - You are given a dark shiny solid and asked to...Ch. 8 - What are valence electrons? For representative...Ch. 8 - Write the outer electron configurations for the...Ch. 8 - Use the first-row transition metals (Sc to Cu) as...Ch. 8 - The electron configurations of ions derived from...Ch. 8 - What do we mean when we say that two ions or an...Ch. 8 - What is wrong with the statement The atoms of...Ch. 8 - Give three examples of first-row transition metal...Ch. 8 - In the periodic table, the element hydrogen is...Ch. 8 - A neutral atom of a certain element has 17...Ch. 8 - Group the following electron configurations in...Ch. 8 - Group the following electron configurations in...Ch. 8 - Without referring to a periodic table, write the...Ch. 8 - Specify the group of the periodic table in which...Ch. 8 - Prob. 8.25QPCh. 8 - A metal ion with a net +3 charge has five...Ch. 8 - Prob. 8.27QPCh. 8 - Write the ground-state electron configurations of...Ch. 8 - Write the ground-state electron configurations of...Ch. 8 - Name the ions with +3 charges that have the...Ch. 8 - Which of the following species are isoelectronic...Ch. 8 - Group the species that are isoelectronic: Be2+, F,...Ch. 8 - Prob. 8.33QPCh. 8 - How does atomic radius change (a) from left to...Ch. 8 - Prob. 8.35QPCh. 8 - Explain why, for isoelectronic ions, the anions...Ch. 8 - Prob. 8.37QPCh. 8 - Arrange the following atoms in order of decreasing...Ch. 8 - Prob. 8.39QPCh. 8 - Which is the smallest atom in Group 7A?Ch. 8 - Why is the radius of the lithium atom considerably...Ch. 8 - Use the second period of the periodic table as an...Ch. 8 - Indicate which one of the two species in each of...Ch. 8 - List the following ions in order of increasing...Ch. 8 - Prob. 8.45QPCh. 8 - Explain which of the following anions is larger,...Ch. 8 - Give the physical states (gas, liquid, or solid)...Ch. 8 - Prob. 8.48QPCh. 8 - Prob. 8.49QPCh. 8 - Sketch the outline of the periodic table and show...Ch. 8 - Arrange the following in order of increasing first...Ch. 8 - Prob. 8.52QPCh. 8 - Prob. 8.53QPCh. 8 - In general, ionization energy increases from left...Ch. 8 - Prob. 8.55QPCh. 8 - Two atoms have the electron configurations...Ch. 8 - Prob. 8.57QPCh. 8 - Plasma is a state of matter consisting of positive...Ch. 8 - Prob. 8.59QPCh. 8 - Prob. 8.60QPCh. 8 - Arrange the elements in each of the following...Ch. 8 - Specify which of the following elements you would...Ch. 8 - Considering their electron affinities, do you...Ch. 8 - Explain why alkali metals have a greater affinity...Ch. 8 - What is meant by the diagonal relationship? Name...Ch. 8 - Prob. 8.66QPCh. 8 - Use the alkali metals and alkaline earth metals as...Ch. 8 - Based on your knowledge of the chemistry of the...Ch. 8 - As a group, the noble gases are very stable...Ch. 8 - Prob. 8.70QPCh. 8 - Prob. 8.71QPCh. 8 - Write balanced equations for the reactions between...Ch. 8 - Write formulas for and name the binary hydrogen...Ch. 8 - Which oxide is more basic, MgO or BaO? Why?Ch. 8 - State whether each of the following properties of...Ch. 8 - With reference to the periodic table, name (a) a...Ch. 8 - Write equations representing the following...Ch. 8 - List all the common ions of representative...Ch. 8 - Write the empirical (or molecular) formulas of...Ch. 8 - Element M is a shiny and highly reactive metal...Ch. 8 - Match each of the elements on the right with its...Ch. 8 - Arrange the following species in isoelectronic...Ch. 8 - Prob. 8.83QPCh. 8 - Which of the following properties show a clear...Ch. 8 - Prob. 8.85QPCh. 8 - Prob. 8.86QPCh. 8 - Prob. 8.88QPCh. 8 - For each pair of elements listed, give three...Ch. 8 - Name the element that forms compounds, under...Ch. 8 - Explain why the first electron affinity of sulfur...Ch. 8 - The H ion and the He atom have two 1s electrons...Ch. 8 - Predict the products of the following oxides with...Ch. 8 - Prob. 8.94QPCh. 8 - Prob. 8.95QPCh. 8 - Prob. 8.96QPCh. 8 - Prob. 8.97QPCh. 8 - The formula for calculating the energies of an...Ch. 8 - Why do noble gases have negative electron affinity...Ch. 8 - The atomic radius of K is 227 pm and that of K+ is...Ch. 8 - The atomic radius of F is 72 pm and that of F is...Ch. 8 - Prob. 8.102QPCh. 8 - Referring to the Chemistry in Action essay...Ch. 8 - Prob. 8.104QPCh. 8 - Prob. 8.105QPCh. 8 - Prob. 8.106QPCh. 8 - Identify the ions whose orbital diagrams for the...Ch. 8 - Prob. 8.108QPCh. 8 - Prob. 8.109QPCh. 8 - Prob. 8.110QPCh. 8 - Explain, in terms of their electron...Ch. 8 - The standard enthalpy of atomization of an element...Ch. 8 - Write the formulas and names of the hydrides of...Ch. 8 - Prob. 8.114QPCh. 8 - Prob. 8.115QPCh. 8 - Prob. 8.116QPCh. 8 - Write a balanced equation for the preparation of...Ch. 8 - Write chemical formulas for oxides of nitrogen...Ch. 8 - Prob. 8.119QPCh. 8 - In general, atomic radius and ionization energy...Ch. 8 - Explain why the electron affinity of nitrogen is...Ch. 8 - Prob. 8.122QPCh. 8 - Write a balanced equation that predicts the...Ch. 8 - Prob. 8.124QPCh. 8 - Prob. 8.125QPCh. 8 - Prob. 8.126QPCh. 8 - Prob. 8.127QPCh. 8 - Predict the atomic number and ground-state...Ch. 8 - Prob. 8.129QPCh. 8 - Prob. 8.130QPCh. 8 - Prob. 8.131QPCh. 8 - Prob. 8.132QPCh. 8 - Prob. 8.133QPCh. 8 - Both Mg2+ and Ca2+ are important biological ions....Ch. 8 - Match each of the elements on the right with its...Ch. 8 - Prob. 8.136QPCh. 8 - On the same graph, plot the effective nuclear...Ch. 8 - One allotropic form of an element X is a colorless...Ch. 8 - Prob. 8.139QPCh. 8 - Prob. 8.140QPCh. 8 - Use your knowledge of thermochemistry to calculate...Ch. 8 - Referring to Table 8.2, explain why the first...Ch. 8 - Prob. 8.143QPCh. 8 - One way to estimate the effective charge (Zeff) of...Ch. 8 - To prevent the formation of oxides, peroxides, and...Ch. 8 - Prob. 8.146QPCh. 8 - Recent theoretical calculations suggest that...Ch. 8 - Prob. 8.148QPCh. 8 - Compare the work function for cesium (206 kJ/mol)...Ch. 8 - Prob. 8.150QPCh. 8 - Prob. 8.151QPCh. 8 - Prob. 8.152QPCh. 8 - Using the following boiling-point data, estimate...Ch. 8 - Prob. 8.154QPCh. 8 - Prob. 8.155QP
Knowledge Booster
Similar questions
- How many unpaired electrons are there in the following ions? (a) Al3+(b) Cl-(c) Sr2+(d) Zr4+arrow_forwardWhat is the electron configuration of the Ba3+ ion? Suggest a reason why this ion is not normally found in nature.arrow_forwardFrom the list of atoms and ions given, select all the species that have the same electron configurations. A Na* В Ne D E F Mg²*arrow_forward
- Two sets of ionizations are shown in the tables below. Complete the tables by ordering each set of ionizations by increasing amount of energy required. In other words, for each set choose "1" next to the ionization that would require the least energy, "2" next to the ionization that would require the next least energy, and so on. ionization + Cs Cs + e + Xe → Xe te + Kr→ Kr + e energy required ? ? ? O ionization He → He + e Br→ Br te + Fr → Fr + e energy required ? ? ?arrow_forwardConsider As and Br. Which would have a higher effective nuclear charge and why? O O Arsenic (As) because it has fewer electrons than bromine. Bromine (Br) because it has more electrons than arsenic. Arsenic (As) because both have the same number of core electrons, but Arsenic has fewer protons. Bromine (Br) because both have the same number of core electrons, but bromine has more protons. They have the same effective nuclear charge because they are in the same row.arrow_forwardCalcium (Ca), manganese (Mn) and germanium (Ge) are elements in the fourth period of the Periodic Table. All elements form 2+ cations. Ca has a radius of 114 pm, Mn²* has a radius of 81 pm, and Ge2* has a radius of 87 pm. a) Write the electron configuration for Ca2* using the condensed noble gas notation. Identify which orbitals lose electrons to yield the 2+ cation. b) Write the electron configuration for Mn2 using the condensed noble gas notation. Identify which orbitals lose electrons to yield the 2+ cation. c) Write the electron configuration for Ge2 using the condensed noble gas notation. Identify which orbitals lose electrons to yield the 2+ cation. d) Explain the radius size trend for these three ions. (2-3 sentences)arrow_forward
- Rank the following five ions in order of decreasing radius. Use the periodic table as necessary. Rank from largest to smallest radius. To rank items as equivalent, overlap them. F− Cl− Br− I− At−arrow_forwardPlease answer question 6 part A, B, and Carrow_forwardCan someone please show me how to figure these outr? Thank You!arrow_forward
- Reorder the list in the table, if necessary, so that the atoms and ions in it are list in order of decreasing size.arrow_forwardFor each of the following sets of atoms and ions, decide which is smallest and which is the largest. Explain each briefly. Na, Na+ Fe2+, Fe3+ note; this is urgent please answer immediately. thank you.arrow_forward11. How do the core charges for H, Li, and Na compare to each other? Based on this answer and their respective ionization energies, which species has the valence shell with the largest radius? Which has the valence shell with the smallest radius? 12. Can you deduce a trend in ionization energy as you move from left to right across a period (row)? Can you deduce a trend in core charge as you move from left to right across a period (row)? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER