bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8.40E
Interpretation Introduction

(a)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.40E

The equilibrium constant for the given gaseous reaction is expressed as,K=[CO2]2[CO]2[O2]

Explanation of Solution

The given gaseous reaction is represented as,2CO+O22CO2

The concentration of the product CO2 will be in the numerator and is raised to the power 2. The concentration of reactant CO and O2 will be in the denominator. The concentration of reactant CO is raised to the power 2 and O2 is raised to the power 1.

Therefore, the equilibrium constant for the above gaseous reaction is expressed as,K=[CO2]2[CO]2[O2]

Conclusion

The equilibrium constant for the given gaseous reaction is expressed as,K=[CO2]2[CO]2[O2]

Interpretation Introduction

(b)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.40E

The equilibrium constant for the given gaseous reaction is expressed as,K=[NO2]2[N2O4]

Explanation of Solution

The given gaseous reaction is represented as,N2O42NO2

The concentration of the product NO2 will be in the numerator and is raised to the power 2. The concentration of reactant N2O4 will be in denominator and is raised to the power 1.

Therefore, the equilibrium constant for the above gaseous reaction is expressed as,K=[NO2]2[N2O4]

Conclusion

The equilibrium constant for the given gaseous reaction is expressed as,K=[NO2]2[N2O4]

Interpretation Introduction

(c)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.40E

The equilibrium constant for the given gaseous reaction is expressed as,K=[CO2]4[H2O]6[C2H6]2[O2]7

Explanation of Solution

The given gaseous reaction is represented as,2C2H6+7O24CO2+6H2O

The concentration of the product CO2 and H2O will be in the numerator. The concentration of the product CO2 is raised to the power 4 and H2O is raised to the power 6. The concentration of reactant C2H6 and O2 will be in the denominator. The concentration of reactant C2H6 is raised to the power 2 and O2 is raised to the power 7.

Therefore, the equilibrium constant for the above gaseous reaction is expressed as,K=[CO2]4[H2O]6[C2H6]2[O2]7

Conclusion

The equilibrium constant for the given gaseous reaction is expressed as,K=[CO2]4[H2O]6[C2H6]2[O2]7

Interpretation Introduction

(d)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.40E

The equilibrium constant for the given gaseous reaction is expressed as,K=[NO]2[Cl2][NOCl]2

Explanation of Solution

The given gaseous reaction is represented as,2NOCl2NO+Cl2

The concentration of the product NO and Cl2 will be in the numerator. The concentration of the product NO is raised to the power 2 and Cl2 is raised to the power 1. The concentration of reactant NOCl will be in denominator and is raised to the power 2.

Therefore, the equilibrium constant for the above gaseous reaction is expressed as,K=[NO]2[Cl2][NOCl]2

Conclusion

The equilibrium constant for the given gaseous reaction is expressed as,K=[NO]2[Cl2][NOCl]2

Interpretation Introduction

(e)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.40E

The equilibrium constant for the given gaseous reaction is expressed as,K=[ClO2]4[O2][Cl2O5]2

Explanation of Solution

The given gaseous reaction is represented as,2Cl2O5O2+4ClO2

The concentration of the product O2 and ClO2 will be in the numerator. The concentration of the product O2 is raised to the power 1 and ClO2 is raised to the power 4. The concentration of reactant Cl2O5 will be in denominator and is raised to the power 2.

Therefore, the equilibrium constant for the above gaseous reaction is expressed as,K=[ClO2]4[O2][Cl2O5]2

Conclusion

The equilibrium constant for the given gaseous reaction is expressed as,K=[ClO2]4[O2][Cl2O5]2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Learning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…
need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).   Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%.   Part B - Compare difference in free energy to the thermal…
need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).   Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%.   Part B - Compare difference in free energy to the thermal…

Chapter 8 Solutions

Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card

Ch. 8 - Classify the following processes according to...Ch. 8 - Describe the observations or measurements that...Ch. 8 - Prob. 8.13ECh. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - A reaction generates chlorine gas (Cl2) as a...Ch. 8 - A reaction generates hydrogen gas (H2) as a...Ch. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - In each of the following, which reaction mechanism...Ch. 8 - Which reaction mechanism assumptions are...Ch. 8 - Prob. 8.22ECh. 8 - Sketch energy diagrams to represent each of the...Ch. 8 - Prob. 8.24ECh. 8 - Use energy diagrams to compare catalyzed and...Ch. 8 - Prob. 8.26ECh. 8 - The following reactions are proposed. Make a rough...Ch. 8 - Prob. 8.28ECh. 8 - Prob. 8.29ECh. 8 - Suppose you are running a reaction and you want to...Ch. 8 - A reaction is started by mixing reactants. As time...Ch. 8 - A reaction is run at 10C and takes 3.7hours to go...Ch. 8 - What factor is more important than simply the...Ch. 8 - Prob. 8.34ECh. 8 - Describe the establishment of equilibrium in a...Ch. 8 - Prob. 8.36ECh. 8 - Prob. 8.37ECh. 8 - Colorless hydrogen gas (H2) and red-brown colored...Ch. 8 - Colorless N2O4 gas decomposes to form red-brown...Ch. 8 - Prob. 8.40ECh. 8 - Write an equilibrium expression for each of the...Ch. 8 - Prob. 8.42ECh. 8 - Prob. 8.43ECh. 8 - Prob. 8.44ECh. 8 - Prob. 8.45ECh. 8 - A sample of gaseous BrCl is allowed to decompose...Ch. 8 - At 600C, gaseous CO and Cl2 are mixed together in...Ch. 8 - A mixture of the gases NOCl, Cl2 and NO is allowed...Ch. 8 - Consider the following equilibrium constants....Ch. 8 - Prob. 8.50ECh. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Prob. 8.54ECh. 8 - Tell what will happen to each equilibrium...Ch. 8 - Tell what will happen to each equilibrium...Ch. 8 - The gaseous reaction 2HBr(g)H2(g)+Br2(g) is...Ch. 8 - Prob. 8.58ECh. 8 - Prob. 8.59ECh. 8 - Prob. 8.60ECh. 8 - Prob. 8.61ECh. 8 - Prob. 8.62ECh. 8 - Prob. 8.63ECh. 8 - Prob. 8.64ECh. 8 - Prob. 8.65ECh. 8 - Prob. 8.66ECh. 8 - Refer to Figure 8.10 and answer the questions....Ch. 8 - Refer to Figure 8.13 and answer the questions....Ch. 8 - Prob. 8.69ECh. 8 - Prob. 8.70ECh. 8 - Suppose you have two identical unopened bottles of...Ch. 8 - Someone once suggested that it is impossible to...Ch. 8 - A reaction takes place between an acid and...Ch. 8 - If the reaction:A+BC+D is designated as first...Ch. 8 - Prob. 8.75ECh. 8 - A book is held 6 feet above the floor and then...Ch. 8 - Prob. 8.77ECh. 8 - Prob. 8.78ECh. 8 - Prob. 8.79ECh. 8 - Prob. 8.80ECh. 8 - Prob. 8.81ECh. 8 - Which of the following is the best example of...Ch. 8 - Which is NOT an example of an endothermic change?...Ch. 8 - Which of the following processes is endothermic?...Ch. 8 - Which sentence best describes the following...Ch. 8 - By which of the following mechanisms does a...Ch. 8 - Which of the following is NOT true of reversible...Ch. 8 - Given the reaction: 2CO(g)+O2(g)2CO2(g) When there...Ch. 8 - Prob. 8.89ECh. 8 - Consider the reaction N2(g)+3H2(g)2NH3(g)+heat....Ch. 8 - Prob. 8.91ECh. 8 - Prob. 8.92ECh. 8 - For the reaction: H2(g)+Br2(g)2HBr(g), the...Ch. 8 - Prob. 8.94E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY