An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she does have devices to measure distance and time accurately. She knows her own mass is 78.4 kg, but she is unsure of the mass of a large gas canister in the airless rocket. When this canister is approaching her at 3.50 m/s, she pushes against it, which slows it down to 1.20 m/s (but does not reverse it) and gives her a speed of 2.40 m/s. What is the mass of this canister?
An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she does have devices to measure distance and time accurately. She knows her own mass is 78.4 kg, but she is unsure of the mass of a large gas canister in the airless rocket. When this canister is approaching her at 3.50 m/s, she pushes against it, which slows it down to 1.20 m/s (but does not reverse it) and gives her a speed of 2.40 m/s. What is the mass of this canister?
An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she does have devices to measure distance and time accurately. She knows her own mass is 78.4 kg, but she is unsure of the mass of a large gas canister in the airless rocket. When this canister is approaching her at 3.50 m/s, she pushes against it, which slows it down to 1.20 m/s (but does not reverse it) and gives her a speed of 2.40 m/s. What is the mass of this canister?
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
A block of mass m = 2.50 kg situated on an incline at an angle of
k=100 N/m
www
50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched.
Ө
m
i
(a) How far does it move down the frictionless incline before coming to rest?
m
(b) What is its acceleration at its lowest point?
Magnitude
m/s²
Direction
O up the incline
down the incline
(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m
from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C.
-A
3.00 m
B
C
-6.00 m
i
(b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B?
Yes
No
If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)
m
Chapter 8 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.