Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.26P
To determine
(a)
The value ofa.
To determine
(b)
The value ofa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ten-turn solenoid has a ferromagnetic core with a relative permeability of 10,000. The length of the solenoid is l=10 cm and its cross section area is A=1 cm2. The amount of current driving the solenoid is 0.1 A. Determine the magnetic flux intensity H in the core. Provide your answer in A/m. Round off to your answer to one decimal.
A DC current I flows in a long solenoidwith n coil-turns per unit length. Thecore is made of iron with permeability
µ
, and has a cross section area S.Determine the force acting on the coreif it is withdrawn to the position shownin figure.
B. For the following magnetic circuit, the flux passing through the core is 1.32 mWb, the cross section
of the core is 3 cm by 4 cm, the laminated section has a stacking factor of 0.9, and the gap is 1 mm.
Determine the flux density in each section. Neglect fringing
d
N turns
Cast iron
Air gap
Laminated sheet steel
Chapter 8 Solutions
Engineering Electromagnetics
Ch. 8 - A point charge, Q = - 0.3 /C and m = 3 Ă— -10-16...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Show that a charged particle in a uniform magnetic...Ch. 8 - Prob. 8.5PCh. 8 - Show that the differential work in moving a...Ch. 8 - A conducting strip of infinite length lies in the...Ch. 8 - Two conducting strips, having infinite length in...Ch. 8 - A current of-100az A/m flows on the conducting...Ch. 8 - A planar transmission line consists of two...
Ch. 8 - Prob. 8.11PCh. 8 - Two circular wire rings are parallel to each...Ch. 8 - An infinitely long current filament is oriented...Ch. 8 - A solenoid is 25 era long, 3 cm in diameter, and...Ch. 8 - Prob. 8.15PCh. 8 - Prob. 8.16PCh. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Given a material for which ℵK = 3.1 and within...Ch. 8 - Find H in a material where (a) fir = 4.2, there...Ch. 8 - Prob. 8.21PCh. 8 - Prob. 8.22PCh. 8 - Calculate values for HO,B0, and M0 at p = c for a...Ch. 8 - Two current sheets, K0,ay, A/m at z = 0 and -K0,ay...Ch. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Let đ�œ‡rj = 2 in region 1, defined by 2x + 3y —...Ch. 8 - For values of B below the knee on the...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - A toroid is constructed of a magnetic material...Ch. 8 - Prob. 8.32PCh. 8 - Prob. 8.33PCh. 8 - Determine the energy stored per unit length in the...Ch. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - A Toroid has known, reluctance R. Two windings...Ch. 8 - Prob. 8.38PCh. 8 - Conducting planes in air at Z = 0 and z = d carry...Ch. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Find the mutual inductance between two filaments...Ch. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Beginning with the definition, of the scalar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A ferromagnetic core is shown below. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. Find the value of the current that will produce a flux of 0.003 Wb. With this current, what is the flux density at the top of the core? What is the flux density at the right side of the core? Assume that the relative permeability of the core is 1000. 1. - 10 cm--- - 20 cm - 15 cm 500 tums 15 cm 15 cm [1.21 A, 0.4 T, 1.2 T]arrow_forwardA three-legged ferromagnetic magnetic core with the coil dimensions shown below has a of 500 turns wrapped around the right leg. The core relative permeability is 4000 times, The magnetic flux in the left leg of the core has a value of 40 mWb. The center leg has an air gap of 0.8 mm, its fringing effect is neglected. Draw the corresponding magnetic circuit and find the values of the coil current i, and the flux in each leg of the core. cm 10 cm, 25cm 25 cm 10 cm 10 cm 25 cm 0.8 mm 500 turns 10 cm Core depth = 10 cmarrow_forwardw1arrow_forward
- A ferromagnetic core with a relative permeability of 1500 is shown in the following figure. The depth of the core is 5 cm. Because of fringing effects, the effective area of the air gaps is 5 percent larger than their physical size. If there are 300 turns in the coil wrapped around the center leg of the core, and if the current in the coil is 1.25 A, find the magnetic flux and the field density in all three legs of the core, as well as the magnetic flux and flux density in the two air gaps.arrow_forwardw2arrow_forwardA ferromagnetic core with a relative permeability of 1500 is shown in the Figure. The dimensions are shown in the diagram, and the depth of the core is 5cm. The air gaps on the left and right sides of the core are 0.050 and 0.070 cm, respectively. Because of the fringing effects, the effective area of the air gaps is 5 percent larger than their physical size. If there are 300 turns in the coil wrapped around the center leg of the core and if the current in the coil is 1.0 A, what are the flux values for the left, center, and right legs of the core? What is the magnetic field in each air gap? |7 cm 7 cm 7 cm to 30 cm 30 cm 7 cm 30 cm 0.07 cm 300 turns 0.05 cm 7 cm Core depth = 5 cmarrow_forward
- Amagnetic field is being generated by a current of 2.0A flowing through 180 turns of wire on a core having a reluctance of 210000.0 At/Wb. Determine the flux of the circuit in mWb.arrow_forwardi need the answer quicklyarrow_forwardA square magnetic core has a mean length of 43 cm and a cross-sectional area of120cm2. A coil of 200 turns of wire is wound around one of the columns of the core, thewhich is made of a material whose required magnetic field strength is H=115 Aturns/m. a) How much current is required to produce a flux of 0.012 Wb, in the core?b) What is the relative permeability of the core for that current?c) What is the reluctance?arrow_forward
- A magnetic core with an air gap is shown below. For a relative permeability is 3500, and the space free permeability is 4TTX10-7 H/m. Find the reluctance of the left leg and the top side of the core. Ignore the gap in your calculations. 10 cm 0.1 cm gap 20 cm 5 cm 5 cm 40 cm 5 cm core depth = 10 cm Select one: O a. Rieft = 1251 A.t./Wb , Rtop = 1023 A.t/Wb O b. None O c. Rieft = 12.51 KA.t./Wb , Reop = 10.23 KA.t/Wb O d. Rieft = 125.1 A.t./Wb , Rtop = 102.3 A.t/Wbarrow_forwardA solenoid has 250 turns, Solve for the magnetomotive force when the current is 0.12 Amperes, a. in terms Sl unit b. in terms of CGS unitarrow_forwardFigure 1 shows a ring formed with two different materials – cast steel and mild steel. Mild steel has a mean length of 400 mm and an area of 500 mm². Cast steel has a mean length of 300 mm and an area of 312.5 mm2. The magnetisation curve for mild steel and cast steel is shown in Figure 2. Find the total MMF required to cause a flux of 500 µWb in the magnetic circuit. Determine also the total circuit reluctance. 1.8 Cașt steel Cast-steel 1.6 Silicon iron 1.4 Mild steel 1.2 1.0 0.6 Mild stel Cast iron 0.6 Figure 1: Ring arrangement 0.4 0.2 3000 4000 Magnetic field strength, H(A/m) 1000 2000 5000 600ỘI 7000 Figure 2: Magnetization Curve MMF = AT Reluctance = x 10* ΑT/Wb Flux density, B(T)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,