Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8.25P
To determine

(a)

The appropriate sink strength: m.

Expert Solution
Check Mark

Answer to Problem 8.25P

The appropriate sink strength: m1980m2s

Explanation of Solution

Given:

Fluid Mechanics, 8 Ed, Chapter 8, Problem 8.25P

Γ=8500m2/s

The given circulation yields the circumferential velocity at r=40m :

vθ=Γ2πr=85002π(40m)

vθ33.8ms

Assuming sea − level density, ρ=1.225kg/m3, to find radial velocity Bernoulli is to be used:

p+ρ2(0)2=(pΔp)+ρ2(vθ2+vr2)=p2200+1.2252((33.8)2+vr2)

So,

vr49.5ms=mr=m40

Therefore,

m1980m2s.

To determine

(b)

Pressure at r=15m.

Expert Solution
Check Mark

Answer to Problem 8.25P

Pressure, pabsolute=85kPa

Explanation of Solution

Given:

r=15m

m1980m2s (From part (a))

At r=15m, compute,

vr=mr=198015

vr132m/s

And

vθ=Γ2πr=85002π(15)

vθ90m/s

Then we use Bernoulli again to compute the pressure at r=15m :

p+1.2252[(132)2+(90)2]=p,

Or

p=p15700Pa

If we assume sea − level pressure of 101kPa at 8, then:

p=101kPa16kPa

p85kPa.

To determine

(c)

The angle ß at which streamlines cross the circle at r=40m.

Expert Solution
Check Mark

Answer to Problem 8.25P

β=55.6 at which streamlines cross the circle at r=40m

Explanation of Solution

Given:

vr=49.5ms

vθ=33.8ms

With circumferential and radial velocity known, the streamline angle ß is:

β=tan1(vrvθ)=tan1(49.533.8)

β55.6.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Solve this problem and show all of the work. Show how the moments are calculated and draw a diagram
Problem: Textbook Problem 10.52 and 10.53. Determine the moment of inertia of the area about the x- axis and the y-axis. 3 in. 3 in. 6 in. 2 in. 4 in. x
Several reactions are carried out in a closed vessel. The following data are taken for the concentration of compounds A, B, and C [grams per liter] as a function of time [minutes], from the start of the reaction. Show the resulting data and trendlines, with equation and value, on the appropriate graph type (rectilinear, semilog, or log–log) to make the data appear linear.

Chapter 8 Solutions

Fluid Mechanics, 8 Ed

Ch. 8 - Prob. 8.11PCh. 8 - Prob. 8.12PCh. 8 - P8.13 Starting at the stagnation point in Fig....Ch. 8 - P8.14 A tornado may be modeled as the circulating...Ch. 8 - Hurricane Sandy, which hit the New Jersey coast on...Ch. 8 - Prob. 8.16PCh. 8 - P8.17 Find the position (x, y) on the upper...Ch. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Plot the streamlines of the flow due to a line...Ch. 8 - P8.21 At point A in Fig. P8.21 is a clockwise line...Ch. 8 - P8.22 Consider inviscid stagnation flow, (see...Ch. 8 - P8.23 Sources of strength m = 10 m2/s are placed...Ch. 8 - P8.24 Line sources of equal strength m = Ua, where...Ch. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Prob. 8.27PCh. 8 - Sources of equal strength m are placed at the four...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - A Rankine half-body is formed as shown in Fig....Ch. 8 - Prob. 8.32PCh. 8 - P8.33 Sketch the streamlines, especially the body...Ch. 8 - Prob. 8.34PCh. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Consider potential flow of a uniform stream in the...Ch. 8 - A large Rankine oval, with a = 1 m and h = 1 m, is...Ch. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Prob. 8.42PCh. 8 - P8.43 Water at 20°C flows past a 1-rn-diameter...Ch. 8 - Prob. 8.44PCh. 8 - Prob. 8.45PCh. 8 - P8.46 A cylinder is formed by bolting two...Ch. 8 - Prob. 8.47PCh. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - It is desired to simulate flow past a...Ch. 8 - Prob. 8.51PCh. 8 - P8.52 The Flettner rotor sailboat in Fig. E8.3...Ch. 8 - P8.52 The Flettner rotor sailboat in Fig. E8.3 has...Ch. 8 - Prob. 8.54PCh. 8 - Prob. 8.55PCh. 8 - Prob. 8.56PCh. 8 - Prob. 8.57PCh. 8 - Prob. 8.58PCh. 8 - Prob. 8.59PCh. 8 - Prob. 8.60PCh. 8 - Prob. 8.61PCh. 8 - Prob. 8.62PCh. 8 - The superposition in Prob. P8.62 leads to...Ch. 8 - Consider the polar-coordinate stream function...Ch. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - Prob. 8.67PCh. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - Prob. 8.70PCh. 8 - Prob. 8.71PCh. 8 - Prob. 8.72PCh. 8 - Prob. 8.73PCh. 8 - Prob. 8.74PCh. 8 - Prob. 8.75PCh. 8 - Prob. 8.76PCh. 8 - Prob. 8.77PCh. 8 - Prob. 8.78PCh. 8 - Prob. 8.79PCh. 8 - Prob. 8.80PCh. 8 - Prob. 8.81PCh. 8 - Prob. 8.82PCh. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Prob. 8.86PCh. 8 - Prob. 8.87PCh. 8 - Prob. 8.88PCh. 8 - Prob. 8.89PCh. 8 - NASA is developing a swing-wing airplane called...Ch. 8 - Prob. 8.91PCh. 8 - Prob. 8.92PCh. 8 - Prob. 8.93PCh. 8 - Prob. 8.94PCh. 8 - Prob. 8.95PCh. 8 - Prob. 8.96PCh. 8 - Prob. 8.97PCh. 8 - Prob. 8.98PCh. 8 - Prob. 8.99PCh. 8 - Prob. 8.100PCh. 8 - Prob. 8.101PCh. 8 - Prob. 8.102PCh. 8 - Prob. 8.103PCh. 8 - Prob. 8.104PCh. 8 - Prob. 8.105PCh. 8 - Prob. 8.106PCh. 8 - Prob. 8.107PCh. 8 - P8.108 Consider two-dimensional potential flow...Ch. 8 - Prob. 8.109PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Prob. 8.112PCh. 8 - Prob. 8.113PCh. 8 - Prob. 8.114PCh. 8 - Prob. 8.115PCh. 8 - Prob. 8.1WPCh. 8 - Prob. 8.2WPCh. 8 - Prob. 8.3WPCh. 8 - Prob. 8.4WPCh. 8 - Prob. 8.5WPCh. 8 - Prob. 8.6WPCh. 8 - Prob. 8.7WPCh. 8 - Prob. 8.1CPCh. 8 - Prob. 8.2CPCh. 8 - Prob. 8.3CPCh. 8 - Prob. 8.4CPCh. 8 - Prob. 8.5CPCh. 8 - Prob. 8.6CPCh. 8 - Prob. 8.7CPCh. 8 - Prob. 8.1DPCh. 8 - Prob. 8.2DPCh. 8 - Prob. 8.3DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License