Concept explainers
8-18 Which of these acids are monoprotic, which are diprotic, and which are triprotic? Which are amphiprotic?
(a) H2PO4-
(b) HBO32-
(c) HCIO4
(d) C2H5OH
(e) HSO3-
(f) HS-
(g) H2CO3
(a)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
H2 PO4 - is amphiprotic.
Explanation of Solution
H2 PO4 - is amphiprotic as it can release or accepts a proton as follows:
H2 PO4 - releases proton in aqueous solution and releases hydronium ion as follows:
H2 PO4 -gains proton in aqueous solution and releases hydroxide ion as follows:
(b)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
HBO3 -2 is amphiprotic.
Explanation of Solution
HBO3 -2 is amphiprotic as it can release or accepts a proton as follows:
HBO3 -2 releases proton in aqueous solution and releases hydronium ion as follows:
HBO3 -2 gains proton in aqueous solution and releases hydroxide ion as follows:
(c)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
HClO4 is monoprotic acid.
Explanation of Solution
HClO4 is monoprotic acid as it can release only one proton in aqueous solution and releases hydronium ion as follows:
(d)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
C2 H5 OH is monoprotic acid.
Explanation of Solution
C2 H5 OH is monoprotic acid as it can release only one proton in aqueous solution and releases hydronium ion as follows:
(e)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
HSO3 - is amphiprotic.
Explanation of Solution
HSO3 - is amphiprotic as it can release or accepts a proton as follows:
HSO3 -2 releases proton in aqueous solution and releases hydronium ion as follows:
HSO3 -2 gains proton in aqueous solution and releases hydroxide ion as follows:
(f)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
HS- is amphiprotic.
Explanation of Solution
HS- is amphiprotic as it can release or accepts a proton as follows:
HS- releases proton in aqueous solution and releases hydronium ion as follows:
HS-gains proton in aqueous solution and releases hydroxide ion as follows:
(g)
Interpretation:
The given chemical substance is monoprotic, diprotic or triprotic to be identified.
Concept Introduction:
A chemical substance which releases single proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as monoprotic acid.
A chemical substance which releases two proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as diprotic acid.
A chemical substance which releases three proton or hydronium ion per molecule on dissociation in the aqueous solution is termed as triprotic acid.
A chemical substance which can release or accepts a proton or hydronium ion in aqueous solution to behave as acid or base is termed as amphiprotic.
Answer to Problem 8.18P
H2 CO3 is diprotic acid.
Explanation of Solution
H2 CO3 is diprotic acid as it can release twoproton in aqueous solution and releases hydronium ion as follows:
Want to see more full solutions like this?
Chapter 8 Solutions
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Complete the following reaction by identifying the principle organic product of the reactionarrow_forwardDenote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- 10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forwardWhich one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forwardWhich of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forward
- In the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forwardWhich of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forwardWhich of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forward
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forwardDraw the major organic product of the Bronsted acid-base reaction. Include all lone pairs and charges as appropriate. Ignore any counterions. :0: NaOH Harrow_forward5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. Specific heat H₂O (1) Specific heat H₂O (s) 4.18 J/g°C 2.11 J/g°C Heat of vaporization 2260 J/g Heat of fusion 334 J/g Melting point 0°C 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °Carrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning