
(a)
Interpretation:
The overall balanced
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of

Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The number of moles of electrons transferred in the above reaction is
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of the reaction (1),
The value
Substitute the values of the standard oxidation potential of the reaction (2),
The value
The balanced overall electrochemical reaction is obtained by multiplying chemical equation (1) by
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(b)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of

Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
From Table
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard oxidation potential of the reaction (4),
The value
Substitute the values of the standard reduction potential of the reaction (5),
The value
The balanced overall electrochemical reaction is obtained by multiplying chemical equation (5) by
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(c)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of

Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
From Table
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of reaction (6),
The value
Substitute the values of the standard reduction potential of reaction (7),
The value
Add chemical equation (6) and chemical equation (7) to obtain the balanced overall electrochemical reaction. The formation of overall balanced chemical equation is represented as,
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(d)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of

Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The number of moles of electrons transferred in the above reaction is
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of the reaction (8),
The value
Substitute the values of the standard oxidation potential of the reaction (9),
The value
Add chemical equation (8) and chemical equation (9) to obtain the balanced overall electrochemical reaction. The formation of overall balanced chemical equation is represented as,
The value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
Want to see more full solutions like this?
Chapter 8 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Draw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. O CH3CH2NH2, TSOH Select to Draw >arrow_forwardPredict the major organic product(s) for the following reaction.arrow_forwardPredict the major organic product(s) for the following reactions.arrow_forward
- Provide the complete mechanism for the reactions below. You must include appropriate arrows,intermediates, and formal charges.arrow_forwardIndicate the products obtained by reacting fluorobenzene with a sulfonitric mixture.arrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. C6H5 CH3arrow_forward
- If I have 1-bromopropene and I want to obtain (1,1-dipropoxyethyl)benzene, indicate the compound that I should add in addition to NaOH.arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Ο HSCH2CH2CH2SH, BF3 Select to Draw I Submitarrow_forwardFeedback (7/10) Draw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. Incorrect, 3 attempts remaining Ο (CH3CH2)2NH, TSOH Select to Draw V N. 87% Retryarrow_forward
- If I want to obtain (1,1-dipropoxyethyl)benzene from 1-bromopropene, indicate the product that I have to add in addition to NaOH.arrow_forwardIndicate the products obtained when fluorobenzene reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained when chlorobenzene acid reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




