(a)
Interpretation:
The overall balanced
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of
Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The number of moles of electrons transferred in the above reaction is
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of the reaction (1),
The value
Substitute the values of the standard oxidation potential of the reaction (2),
The value
The balanced overall electrochemical reaction is obtained by multiplying chemical equation (1) by
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(b)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of
Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
From Table
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard oxidation potential of the reaction (4),
The value
Substitute the values of the standard reduction potential of the reaction (5),
The value
The balanced overall electrochemical reaction is obtained by multiplying chemical equation (5) by
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(c)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of
Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
From Table
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of reaction (6),
The value
Substitute the values of the standard reduction potential of reaction (7),
The value
Add chemical equation (6) and chemical equation (7) to obtain the balanced overall electrochemical reaction. The formation of overall balanced chemical equation is represented as,
Therefore, the value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
(d)
Interpretation:
The overall balanced electrochemical reaction and the values of
Concept introduction:
Standard Gibbs free energy of a reaction is used check whether the reaction is spontaneous or not. If the value of
Answer to Problem 8.11E
The overall balanced electrochemical reaction is as follows,
The value of
Explanation of Solution
The given reaction is represented as,
From Table
The number of moles of electrons transferred in the above reaction is
From Table
The above equation is reversed and the value of
The number of moles of electrons transferred in the above reaction is
The relation between standard Gibbs free energy and standard electrical potential is represented as,
Where,
•
•
•
•
Substitute the values of the standard reduction potential of the reaction (8),
The value
Substitute the values of the standard oxidation potential of the reaction (9),
The value
Add chemical equation (8) and chemical equation (9) to obtain the balanced overall electrochemical reaction. The formation of overall balanced chemical equation is represented as,
The value
The number of electrons transferred in the overall reaction is
Rearrange the equation (3) for the value of
Substitute the values of
The value of
The overall balanced electrochemical reaction is as follows,
The value of
Want to see more full solutions like this?
Chapter 8 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Denote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forward
- Which one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forwardWhich of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forward
- Which of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forwardWhich of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forward
- Draw the major organic product of the Bronsted acid-base reaction. Include all lone pairs and charges as appropriate. Ignore any counterions. :0: NaOH Harrow_forward5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. Specific heat H₂O (1) Specific heat H₂O (s) 4.18 J/g°C 2.11 J/g°C Heat of vaporization 2260 J/g Heat of fusion 334 J/g Melting point 0°C 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °Carrow_forwardCalculate the total amount of heat transferred as 50 g of Water -10°C. Calculate the total amount of heat transferred as 25 g of water is heated from 50°C to 100°C as a gas. \table[[Specific heat H₂O(g), 2.00°C Η 2 g 5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. 4.18 J/g°C 2.11 J/g°C 2260 J/g 334 J/g Specific heat H₂O (1) Specific heat H₂O (s) Heat of vaporization Heat of fusion Melting point 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °C 0°Carrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co