Write a balanced equation for the preparation of (a) molecular oxygen, (b) ammonia, (c) carbon dioxide, (d) molecular hydrogen, (e) calcium oxide. Indicate the physical state of the reactants and products in each equation.
(a)

Interpretation:
The balanced equation for the preparation of molecular oxygen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular oxygen can be given as:
Explanation of Solution
Molecular oxygen is prepared from
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the reactant
Therefore,
The balanced equation for the preparation of molecular oxygen can be given as:
(b)

Interpretation:
The balanced equation for the preparation of ammonia has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of ammonia can be given as:
Explanation of Solution
Ammonia is prepared by the reaction between nitrogen and hydrogen. Reaction for the preparation of ammonia can be given as:
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the product
Therefore,
The balanced equation for the preparation of ammonia can be given as:
(c)

Interpretation:
The balanced equation for the preparation of carbon dioxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of carbon dioxide can be given as:
Explanation of Solution
Carbon dioxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of carbon dioxide can be given as:
(d)

Interpretation:
The balanced equation for the preparation of molecular hydrogen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular hydrogen can be given as:
Explanation of Solution
Molecular hydrogen is prepared by the reaction between
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of molecular hydrogen can be given as:
(e)

Interpretation:
The balanced equation for the preparation of calcium oxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of calcium oxide can be given as:
Explanation of Solution
Calcium oxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of calcium oxide can be given as:
Want to see more full solutions like this?
Chapter 8 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
Additional Science Textbook Solutions
HUMAN ANATOMY
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology: An Introduction
General, Organic, and Biological Chemistry - 4th edition
Campbell Essential Biology (7th Edition)
- i need help with the followingarrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ararrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ararrow_forwardHomework 13 (Ch17) Question 4 of 4 (1 point) | Question Attempt: 2 of 2 ✓ 1 ✓ 2 = 3 4 Time Remaining: 4:25:54 Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction free energy of the following chemical reaction: 2CH3OH (g)+302 (g) → 2CO2 (g) + 4H₂O (g) Round your answer to zero decimal places. ☐ kJ x10 ☐ Subm Check 2020 Hill LLC. All Rights Reserved. Terms of Use | Privacy Cearrow_forward
- Identifying the major species in weak acid or weak base equilibria Your answer is incorrect. • Row 2: Your answer is incorrect. • Row 3: Your answer is incorrect. • Row 6: Your answer is incorrect. 0/5 The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: HF 0.1 mol of NaOH is added to 1.0 L of a 0.7M HF solution. bases: 0.13 mol of HCl is added to 1.0 L of a solution that is 1.0M in both HF and KF. Exponent other: F acids: HF bases: F other: K 1 0,0,... ? 000 18 Ararrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ararrow_forwardHighlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning


