Concept explainers
(a)
Interpretation: The Lewis structure that contributes most to the bonding in
Concept introduction: The Lewis structures are diagrams that give information about the bonding electron pairs and the lone pairs of electrons in a molecule. Similar to electron dot structure in Lewis diagram the lone pair electrons are represented as dots and they also contain lines which represent bonding electron pairs in a bond.
To determine: If the given Lewis structure contributes to the bonding in
(a)
Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 1
The charge present on each atom is known as formal charge which is calculated by using the formula,
For oxygen
The number of valence electrons in oxygen atom is six, the lone pair electrons are two and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are five and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
(b)
To determine: If the given Lewis structure contributes to the bonding in
(b)
Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 2
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are four and the bonding electrons are four.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are three and the bonding electrons are four.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Thus, it is known that the nitrogen atom is more electronegative than carbon atom. Hence, the given Lewis structure does not contribute most to the bonding in
(c)
To determine: If the given Lewis structure contributes to the bonding in
(c)
Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 3
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are five and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are two and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Hence, the given Lewis structure does not contribute most to the bonding in
(d)
To determine: If the given Lewis structure contributes to the bonding in
(d)
Answer to Problem 8.109QP
Solution
The given Lewis structure contributes most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 4
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are six and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electron is one and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Conclusion
The Lewis structure that contributes most to the bonding in the
Want to see more full solutions like this?
Chapter 8 Solutions
CHEMISTRY:SCI.IN CONTEXT (CL)-PACKAGE
- Please correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forwardQuantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forward
- Quantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raiting don't used Ai solutionarrow_forward
- If the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardLaser. Indicate the relationship between metastable state and stimulated emission.arrow_forward
- The table includes macrostates characterized by 4 energy levels (&) that are equally spaced but with different degrees of occupation. a) Calculate the energy of all the macrostates (in joules). See if they all have the same energy and number of particles. b) Calculate the macrostate that is most likely to exist. For this macrostate, show that the population of the levels is consistent with the Boltzmann distribution. macrostate 1 macrostate 2 macrostate 3 ε/k (K) Populations Populations Populations 300 5 3 4 200 7 9 8 100 15 17 16 0 33 31 32 DATO: k = 1,38×10-23 J K-1arrow_forwardDon't used Ai solutionarrow_forwardIn an experiment, the viscosity of water was measured at different temperatures and the table was constructed from the data obtained. a) Calculate the activation energy of viscous flow (kJ/mol). b) Calculate the viscosity at 30°C. T/°C 0 20 40 60 80 η/cpoise 1,972 1,005 0,656 0,469 0,356arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY