(a)
Interpretation:
The given solution has to be classified into hypotonic, isotonic or hypertonic relative to red blood cells.
Concept Introduction:
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.
Hypotonic solution is the solution which has an osmotic pressure less than that in cells. A hypotonic solution causes cells to burst.
Hypertonic solution is the solution which has an osmotic pressure higher than that in cells. A hypotonic solution causes cells to shrink.
Isotonic solution is the solution which has an osmotic pressure equal to that in cells. An isotonic solution has no effect on cell size.
(b)
Interpretation:
The given solution has to be classified into hypotonic, isotonic or hypertonic relative to red blood cells.
Concept Introduction:
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.
Hypotonic solution is the solution which has an osmotic pressure less than that in cells. A hypotonic solution causes cells to burst.
Hypertonic solution is the solution which has an osmotic pressure higher than that in cells. A hypotonic solution causes cells to shrink.
Isotonic solution is the solution which has an osmotic pressure equal to that in cells. An isotonic solution has no effect on cell size.
(c)
Interpretation:
The given solution has to be classified into hypotonic, isotonic or hypertonic relative to red blood cells.
Concept Introduction:
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.
Hypotonic solution is the solution which has an osmotic pressure less than that in cells. A hypotonic solution causes cells to burst.
Hypertonic solution is the solution which has an osmotic pressure higher than that in cells. A hypotonic solution causes cells to shrink.
Isotonic solution is the solution which has an osmotic pressure equal to that in cells. An isotonic solution has no effect on cell size.
(d)
Interpretation:
The given solution has to be classified into hypotonic, isotonic or hypertonic relative to red blood cells.
Concept Introduction:
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.
Hypotonic solution is the solution which has an osmotic pressure less than that in cells. A hypotonic solution causes cells to burst.
Hypertonic solution is the solution which has an osmotic pressure higher than that in cells. A hypotonic solution causes cells to shrink.
Isotonic solution is the solution which has an osmotic pressure equal to that in cells. An isotonic solution has no effect on cell size.
Trending nowThis is a popular solution!
Chapter 8 Solutions
Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th
- I don't understand what to put for final step. Does that just mean termination? And would a radical form when I add bromine to ch2 between the rings?arrow_forwardNonearrow_forward11 1 Which one of the following compounds would show a proton NMR signal at the highest chemical shift? (7pts) cl @amitabh CI CI d) Cl CICIarrow_forward
- Nonearrow_forwardH2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning