CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
F
ext
=
d
p
d
t
=
m
d
υ
d
t
+
υ
d
m
d
t
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kυ. This gives, since Fext = mg,
m
g
=
m
d
υ
d
t
+
υ
(
k
υ
)
Or, dividing by k,
x
g
=
x
d
υ
d
t
+
υ
2
This is a differential equation that has a solution of the form υ = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113–117.)
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Deduce what overvoltage is like in reversible electrodes.
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.