The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder–rod–Earth system, similar to that shown in Fig. 8 - 23 b. Your work on the system is 200 J. The system does work of 60 J on the block. Within the system, the kinetic energy increases by 130 J and the gravitational potential energy decreases by 20 J. (a) Draw an “energy statement” for the system, as in Fig. 8-23 c . (b) What is the change in the thermal energy within the system? Figure 8-24 Question 7.
The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder–rod–Earth system, similar to that shown in Fig. 8 - 23 b. Your work on the system is 200 J. The system does work of 60 J on the block. Within the system, the kinetic energy increases by 130 J and the gravitational potential energy decreases by 20 J. (a) Draw an “energy statement” for the system, as in Fig. 8-23 c . (b) What is the change in the thermal energy within the system? Figure 8-24 Question 7.
The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder–rod–Earth system, similar to that shown in Fig. 8-23b. Your work on the system is 200 J. The system does work of 60 J on the block. Within the system, the kinetic energy increases by 130 J and the gravitational potential energy decreases by 20 J. (a) Draw an “energy statement” for the system, as in Fig. 8-23c. (b) What is the change in the thermal energy within the system?
Experimental Research Report Template
Title: Paper Airplane Flight. Materials: Paper, ruler, tape
Procedure: Fold paper into different airplane designs, such as dart, glider, or classic. Measure and record the distances each design flies when thrown with the same force. Discuss aerodynamics and the factors that affect flight distance.
Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.)
Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.)
Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.)
Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.)
Data Collection: (Record the data that is required at each step of the…
Title: Studying the Relationship Between Drop Height and Bouncing Height of a Ball: You can drop balls of different materials (e.g., rubber, plastic, ping pong) from various heights onto a flat surface and measure the height of their bounce using a ruler.
Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.)
Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.)
Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.)
Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.)
Data Collection: (Record the data that is required at each step of the lab: tables, charts, graphs, sketches, etc.)
Data Analysis: (Explain you…
A traveler at an airport takes an escalator up one floor as in the figure below. The moving staircase would itself carry him upward with vertical velocity component v between entry and exit points separated by height h. However, while the escalator is moving, the hurried traveler climbs the
steps of the escalator at a rate of n steps/s. Assume that the height of each step is hs.
(a) Determine the amount of chemical energy converted into mechanical energy by the traveler's leg muscles during his escalator ride given that his mass is m. (Use any variable or symbol stated above along with the following as necessary: g.)
energy =
(b) Determine the work the escalator motor does on this person. (Use any variable or symbol stated above along with the following as necessary: g.)
work =
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY