Concept explainers
(a)
The speed of the sled and rider at point C.
(a)
Answer to Problem 77AP
The speed of slader and rider at point C is
Explanation of Solution
Consider sled-chute-earth as an isolated system. Since, there is no friction force acting on the system.
Write the eqution for conservation of energy from point A to point C.
Write the equation for conservation of energy
Here,
Since, the system has potential energy due to gravitation of earth.
Write the equation for gravitational potential energy.
Here,
Write the expression for change in potential energy of the system.
Here,
Substitute
Simplify the above equation.
Here,
Since, the system has kinetic energy due to motion of sled and rider.
Write the equation for kinetic energy.
Here,
Write the expression for the change in kinetic energy.
Here,
Substitute
Simplify the above equation.
Here,
Substitute
Rearrange the above equation for
Conclusion:
Substitute
Thus, the speed of slader and rider at point C is
(b)
The magnitude of the total force the water exerts on the sled.
(b)
Answer to Problem 77AP
The magnitude of the total force the water exerts on the sled is
Explanation of Solution
Consider sled-water as a system.
Since, the friction force exerted by water is in retarding force and hence non-conservative force.
Write the equation for conservation of energy
Here,
Write the equation for work done by retarding force.
Here,
Substitute
Rearrange the above equation for
Simplify the above equation.
Since, the total force exerted by the water is friction force and normal force acting on the sled.
Write the equation for normal force
Here,
Write the expression for the magnitude of the total force
Here,
Since, the normal force and friction force are exerted in perpendicular direction.
Substitute
Simplify the above equation.
Conclusion:
Subsitute
Subsitute
Substitute
Thus, the magnitude of the total force the water exerts on the sled is
(c)
The magnitude of the force the chute exerts on the sled at point B.
(c)
Answer to Problem 77AP
The magnitude of the force the chute exerts on the sled at point B is
Explanation of Solution
Consider the sled on the chute at the point B as shown in figure (a).
Write the expression for the angle
Here,
Since, there is no motion in perpendicular direction fo the motion of sled, hence the net force at the point B will be zero.
Write the expression for net force in y-direction as shown in figure (I).
Here,
Conside the free body diagram of the sled and rider at point B.
Write the expression for net force.
Substitute
Rearrange the above equation for
Conclusion:
Substitute
Substitute
Thus, the magnitude of the force the chute exerts on the sled at point B is
(d)
The force exerted by the chute on the sled at point C where the chute is curving in the vertical plane.
(d)
Answer to Problem 77AP
The force exerted by the chute on the sled at point C where the chute is curving in the vertical plane is
Explanation of Solution
Consider the chute is curving in the vertical plane at point C.
The free body diagram of the sled at point C is as shown in figure (b).
Since, the sled has normal force and the centripital force is outward the center of curve.
Write the equation for net force at point C.
Here,
Substitute
Rearrange the above equation.
Conclusion:
Subsitute
Thus, the force exerted by the chute on the sled at point C where the chute is curving in the vertical plane is
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning