Concept explainers
(a)
The maximum height of the ball using conservation of energy.
(a)
Answer to Problem 74PQ
The maximum height of the ball is
Explanation of Solution
Write the expression for the conservation of energy for the situation.
Here,
Assume that the gravitational potential energy is zero on Mimas’s surface. The kinetic energy of the ball will be zero at the maximum height.
Write the expression for
Write the expression for
Here,
Write the expression for
Here,
Put equations (II) to (IV) in equation (I) and rewrite it for
Conclusion:
It is given that the speed of the ball is
Substitute
Therefore, the maximum height of the ball is
(b)
The maximum height of the ball using universal gravitation.
(b)
Answer to Problem 74PQ
The maximum height of the ball using universal gravitation is
Explanation of Solution
Write the equation for the initial gravitational potential energy of the ball using universal gravitation.
Here,
Write the equation for the gravitational potential energy of the ball at maximum height using universal gravitation.
Here,
The final kinetic energy of the ball is zero.
Put equations (III), (VI), (VII) and (VIII) in equation (I) and rewrite it for
Write the expression for the height of the ball above the surface of Mimas.
Conclusion:
Given that the value of
Substitute
Substitute
Therefore, the maximum height of the ball using universal gravitation is
(c)
The difference in result of part (a) with that of part (b) as percent and whether the estimate is too high or low.
(c)
Answer to Problem 74PQ
The percent difference of estimate of part (a) with the result of part (b) is
Explanation of Solution
The value obtained for
Calculate the percent difference between the two values.
Conclusion:
The result obtained in part (a) is lower than the more accurate value in part (b) by
Therefore, the percent difference of estimate of part (a) with the result of part (b) is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A toy car speeds up at 1.0 m/s2 while rolling down a ramp, and slows down at a rate of 2.0 m/s2 while rolling up the same ramp. What is the slope of the ramp in degrees? Grade in %? The friction coefficient?arrow_forwardPlz solution should be complete No chatgpt pls will upvote .arrow_forwardA box with friction coefficient of 0.2 rests on a 12 foot long plank of wood. How high (in feet) must one side of the plank be lifted in order for the box to begin to slide?arrow_forward
- A hydrogen atom has just a single electron orbiting the nucleus, which happens to be a single proton without any neutrons. The proton is positively charged, the electron negatively, but both with the same magnitude of charge given by e=1.602x10-19C. The mass of an electron is 9.11x10-31kg, and the proton is 1.67x10-27kg. Find the ratio of the electrostatic to the gravitational force of attraction between the electron and the proton in hydrogen. \arrow_forwardWhat is the third law pair to the normal force as you sit in a chair? What effect does the sun's pull on earth have in terms of third law pairs?arrow_forwardUsing Newton's 2nd law, show that all objects subject to the pull of gravity alone should fall at the same rate. What is that rate?arrow_forward
- No chatgpt pls will upvotearrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardLight travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media: crown glass (n = 1.52)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning