Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Solution Summary: The author explains the formula to calculate the angular momentum of the astronauts.
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope?
Figure P8.80 Problems 80 and 81
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.