Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope? Figure P8.80 Problems 80 and 81
Solution Summary: The author explains the formula to calculate the angular momentum of the astronauts.
Two astronauts (Fig. P8.80), each haring a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum and (b) the rotational energy of the system. By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are their new’ speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope?
Figure P8.80 Problems 80 and 81
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.