Concept explainers
BIO Bird Tendons Several studies indicate that the elastic properties of tendons can change in response to exercise. In one study guinea fowl were divided into a group that ran for 30 minutes a day on a treadmill, and a control group that was kept in their cages. After 12 weeks, the researchers measured the mechanical properties of the gastrocnemius tendon in each bird. The results for one control bird and one treadmill bird are shown in Figure 8-39. (a) Treating the tendon as an ideal spring, what is the force constant for the control bird? (b) By how much does the control bird’s tendon need to be stretched in order to have the same amount of stored energy as the tendon of the treadmill bird at a deformation of 1.0 mm?
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Modern Physics
Conceptual Integrated Science
College Physics: A Strategic Approach (3rd Edition)
Lecture- Tutorials for Introductory Astronomy
Applied Physics (11th Edition)
Essential University Physics: Volume 1 (3rd Edition)
- List the factors you need to measure to calculate the initial mechanical energy of the skater when he was at the top of the ramp and why you need themarrow_forwardPart A The basis of muscle action is the power stroke of the myosin protein pulling on an actin filament. It takes the energy of one molecule of ATP, 5.1 x 10-20 J, to produce a displacement of 18 nm against a force of 1.0 pN. What is the efficiency? Express your answer as a percentage. e = Submit Request Answer Provide Feedbackarrow_forward3. The figure below shows a force extension-graph for a metal specimen. Force/N 4 m Proportional limit 250 Fracture 200 150 100 50 0.1 0.2 0.3 0,4 0.5 0.6 Extension/10-3m Calculate: a. The force constant of the specimen. b. The work done in stretching the specimen up to the proportionality limit.arrow_forward
- Dynamics of Rigid Bodiesarrow_forwardConsider the energy transfers and transformations listed below in parts (a) through (e). For each part, (i) describe human-made devices designed to pro-duce each of the energy transfers or transformations and, (ii) whenever possible, describe a natural process in which the energy transfer or transformation occurs. Give details to defend your choices, such as identifying the system and identifying other output energy if the device or natural process has limited efficiency. (a) Chemical potential energy transforms into internal energy. (b) Energy transferred by electrical transmission becomes gravitational potential energy. (c) Elastic potential energy transfers out of a system by heat. (d) Energy transferred by mechanical waves does work on a system. (e) Energy carried by electromagnetic waves becomes kinetic energy in a system.arrow_forwardA flea is able to jump about 0.5 m. It has been said that if a flea were as big as a human, it would be able to jump over a 100-story building! When an animal jumps, it converts work done in contracting muscles into gravitational potential energy (with some steps in between). The maximum force exerted by a muscle is proportional to its cross-sectional area, and the work done by the muscle is this force times the length of contraction. If we magnified a flea by a factor of 1 000, the cross section of its muscle would increase by 1 0002 and the length of contraction would increase by 1 000. How high would this superflea be able to jump? (Dont forget that the mass of the superflea" increases as well.)arrow_forward
- A jack-in-the-box is actually a system that consists of an object attached to the top of a vertical spring (Fig. P8.50). a. Sketch the energy graph for the potential energy and the total energy of the springobject system as a function of compression distance x from x = xmax to x = 0, where xmax is the maximum amount of compression of the spring. Ignore the change in gravitational potential energy. b. Sketch the kinetic energy of the system between these points the two distances in part (a)on the same graph (using a different color). FIGURE P8.50 Problems 50 and 79arrow_forward(a) A child slides down a water slide at an amusement park from an initial height h. The slide can be considered frictionless because of the water flowing down it. Can the equation for conservation of mechanical energy be used on the child? (b) Is the mass of the child a factor in determining his speed at the bottom of the slide? (c) The child drops straight down rather than following the curved ramp of the slide. In which case will he be traveling faster at ground level? (d) If friction is present, how would the conservation-of-energy equation be modified? (e) Find the maximum speed of the child when the slide is frictionless if the initial height of the slide is 12.0 m.arrow_forwardThe awe-inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high, with a mass of about 7109 kg. (The pyramid's dimensions are slightly different today due to quarrying and some sagging.) Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year. (a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height. (b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps (see Figure 7.45), bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 kcal/h. What does your answer imply about how much of their work went into block-lifting, versus how much work went into friction and lifting and lowering their own bodies? (c) Calculate the mass of food that had to be supplied each day, assuming that the average worker required 3600 kcal per day and that their diet was 5% protein, 60% carbohydrate, and 35% fat. (These proportions neglect the mass of bulk and non-digestible materials consumed.) Figure 7.45 Ancient pyramids were probably constructed using ramps as simple machines. (credit: Franck Monnier, Wikimedia Commons)arrow_forward
- Suppose a 350-g kookaburra (a large kingfisher bird) picks up a 75-g snake and raises it 2.5 m from the ground to a branch. (a) How much work did the bird do on the snake? (b) How much work did it do to raise its own center of mass to the branch?arrow_forwardA 7.80-g bullet moving at 575 m/s penetrates a tree trunk to a depth of 5.50 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. (b) Assuming the frictional force is constant, determine how much time elapses between the moment the ballet enters the tree and the moment it stops moving.arrow_forwardRubber tends to be nonlinear as an elastic material. Suppose a particular rubber band exerts a restoring force given by Fx(x) = Ax Bx2, where the empirical constants are A = 14 N/m and B = 3.3 N/m2 so that Fx is in newtons when x is in meters. Calculate the change in elastic potential energy of the rubber band when an external force stretches it from x = 0 to x = 0.20 m.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning