Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 23PCE
A skateboarder at a skate park rides along the path shown in Figure 8-31. If the speed of the skateboarder at point A is v = 1.4 m/s, what is her speed at point B? Assume that friction is negligible.
Figure 8-31
Problem 23
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
No chatgpt pls
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
Chapter 8 Solutions
Physics (5th Edition)
Ch. 8.1 - 1. In Figure 8-8, the work done by a conservative...Ch. 8.2 - 1. The work done by a conservative force on a...Ch. 8.3 - A system with only conservative forces acting on...Ch. 8.4 - 4. A system is acted on by more than one force,...Ch. 8.5 - A system consists of an object moving along the x...Ch. 8 - Is it possible for the kinetic energy of an object...Ch. 8 - If the stretch of a spring is doubled, the force...Ch. 8 - When a mass is placed on top of a vertical spring,...Ch. 8 - If a spring is stretched so far that it is...Ch. 8 - An object is thrown upward to a person on a roof....
Ch. 8 - It is a law of nature that the total energy of the...Ch. 8 - Discuss the venous energy conversions that occur...Ch. 8 - Discuss the nature of the work done by the...Ch. 8 - It the force on an object is zero, does that mean...Ch. 8 - When a ball is thrown upward, its mechanical...Ch. 8 - When a ball is thrown upward, it spends the same...Ch. 8 - The work done by a conservative force is indicated...Ch. 8 - 2. Calculate the work done by gravity as a 3.2-kg...Ch. 8 - Calculate the work done by friction as a 37-kg box...Ch. 8 - Predict/Calculate A 2.8-kg block is attached to a...Ch. 8 - Predict/Calculate (a) Calculate the work done by...Ch. 8 - In the system shown in Figure 8-26, suppose the...Ch. 8 - Predict/Explain Ball 1 is thrown to the ground...Ch. 8 - A mass is attached to the bottom of a vertical...Ch. 8 - Find the gravitational potential energy of an...Ch. 8 - A student lifts a 1.42-kg book from her desk to a...Ch. 8 - At the local ski slope, an 82.0-kg skier rides a...Ch. 8 - BIO The Wing of the Hawkmoth Experiments performed...Ch. 8 - Predict/Calculate A vertical spring stores 0.962 J...Ch. 8 - Pushing on the pump of a soap dispenser compresses...Ch. 8 - BIO Mantis Shrimp Smasher A peacock mantis shrimp...Ch. 8 - Predict/Calculate The work required to stretch a...Ch. 8 - A 0.33-kg pendulum bob is attached to a string 1.2...Ch. 8 - Prob. 18PCECh. 8 - Prob. 19PCECh. 8 - For an object moving along the x axis, the...Ch. 8 - At an amusement park, a swimmer uses a water side...Ch. 8 - Prob. 22PCECh. 8 - A skateboarder at a skate park rides along the...Ch. 8 - Three balls are thrown upward with the same...Ch. 8 - A 0.21-kg apple falls from a tree to the ground,...Ch. 8 - Predict/Calculate A 2.9-kg block slides with a...Ch. 8 - A 0.26-kg rock is thrown vertically upward from...Ch. 8 - A 1 40-kg block sides with a speed of 0.950 m/s on...Ch. 8 - A 5.76-kg rock is dropped and allowed to fall...Ch. 8 - Predict/Calculate Suppose the pendulum bob m...Ch. 8 - The two masses in the Atwoods machine shown in...Ch. 8 - In the previous problem, suppose the masses have...Ch. 8 - Prob. 33PCECh. 8 - Catching a wave, a 77-kg surfer starts with a...Ch. 8 - At a playground, a 19-kg child plays on a slide...Ch. 8 - Starting at rest at the edge of a swimming pool, a...Ch. 8 - A 22,000-kg airplane lands with a speed of 64 m/s...Ch. 8 - A78-kg skateboarder grinds down a hubba ledge that...Ch. 8 - You ride your bicycle down a hill, maintaining a...Ch. 8 - A 111-kg seal at an amusement park slides from...Ch. 8 - A 1.9-kg rock is released from rest at the surface...Ch. 8 - A 1250-kg car drives up a hill that is 16.2 m...Ch. 8 - The Outlaw Run roller coaster in Branson,...Ch. 8 - A 1.80-kg block slides on a rough horizontal...Ch. 8 - Figure 8-34 shows a potential energy curve as a...Ch. 8 - An object moves along the x axis, subject to the...Ch. 8 - A 1.34-kg object moves along the x axis, subject...Ch. 8 - The potential energy of a particle moving along...Ch. 8 - A block of mass m = 0.88 kg is connected to a...Ch. 8 - A ball of mass m = 0.75 kg is thrown straight...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - CE You and a friend both solve a problem involving...Ch. 8 - CE A particle moves under the influence of a...Ch. 8 - A sled slides without friction down a small,...Ch. 8 - A 74 Kg skier encounters a dip in the snows...Ch. 8 - Running Shoes The soles of a popular make of...Ch. 8 - Nasal Strips The force required to flex a nasal...Ch. 8 - The water slide shown in Figure 8-37 ends at a...Ch. 8 - A skateboarder starts at point A in Figure 8-38...Ch. 8 - The Crash of Skylab NASAs Skylab, the largest...Ch. 8 - BIO Bird Tendons Several studies indicate that the...Ch. 8 - In the Atwoods machine of Problem 31, the mass m2...Ch. 8 - A 6.60-kg block slides with an initial speed of...Ch. 8 - Jeff of the Jungle swings on a 7.6-m vine that...Ch. 8 - A 1.9-kg block slides down a frictionless ramp, as...Ch. 8 - Suppose the ramp in Figure 8-40 is not motionless....Ch. 8 - BIO Compressing the Ground A running track at...Ch. 8 - BIO A Fleas Jump The resilin in the body of a flea...Ch. 8 - Predict/Calculate Tension at the Bottom A ball of...Ch. 8 - An ice cube is placed on top of an overturned...Ch. 8 - Predict/Calculate The two blocks shown in Figure...Ch. 8 - Predict/Calculate Loop-the-Loop (a) A block of...Ch. 8 - Figure 8-45 shows a 1.75-kg block at rest on a...Ch. 8 - In Figure 8-45 a 1.2-kg block is held at rest...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - Predict/Calculate Referring to Example 8-12...Ch. 8 - Referring to Example 8-12 Suppose the block is...Ch. 8 - Referring to Example 8-17 suppose we would like...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. According to Keplers third law. (a) Me...
Cosmic Perspective Fundamentals
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forward
- A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY