EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
4th Edition
ISBN: 9780135272947
Author: Wolfson
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 57P
To determine
To show:
The energy required to launch a satellite into circular orbit is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There exista a spherical planet with a mass of M and a radius of R. How much energy is required to take a rocket of a mass m from rest on the surface of the planet to a circular orbit a height h above the surface?Find using the Energy Difference Ef -Ei where Ef is the energy in orbit and Ei is the energy at rest on the surface. h is not small
A satellite with mass ,m, orbits a planet of mass , M, at a distance ,R, from the center of the planet. Determine the total energy of the satellite in terms of M,m,R, and G.
Three uniform spheres of masses m,
3.50 kg, m, = 4.00 kg, and mz = 6.50 kg are placed at the corners of a right triangle (see figure below).
Calculate the resultant gravitational force on the object of mass m,, assuming the spheres are isolated from the rest of the Universe.
х 10-11 N
(0, 3.00) m
F12
(-4.00, 0) m
F.
m3
32
m2
. OneDrive
Chapter 8 Solutions
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
Ch. 8.2 - Suppose the distance between two objects is cut in...Ch. 8.3 - Suppose the paths in Fig. 8.8 are the paths of...Ch. 8.4 - Prob. 8.3GICh. 8 - What do Newtons apple and the Moon have in common?Ch. 8 - Prob. 2FTDCh. 8 - When you stand on Earth, the distance between you...Ch. 8 - The force of gravity on an object is proportional...Ch. 8 - A friend who knows nothing about physics asks what...Ch. 8 - Could you put a satellite in an orbit that keeps...Ch. 8 - Why are satellites generally launched eastward and...
Ch. 8 - Given Earths mass, the Moons distance and orbital...Ch. 8 - How should a satellite be launched so that its...Ch. 8 - Does the gravitational force of the Sun do work on...Ch. 8 - Space explorers land on a planet with the same...Ch. 8 - Use data for the Moons orbit from Appendix E to...Ch. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - Two identical lead spheres with their centers 14...Ch. 8 - Whats the approximate value of the gravitational...Ch. 8 - A sensitive gravimeter is carried to the top of...Ch. 8 - Prob. 18ECh. 8 - Find the speed of a satellite in geostationary...Ch. 8 - Marss orbit has a diameter 1.52 times that of...Ch. 8 - Calculate the orbital period for Jupiters moon Io,...Ch. 8 - An astronaut hits a golf ball horizontally from...Ch. 8 - The Mars Reconnaissance Orbiter circles the red...Ch. 8 - Earths distance from the Sun varies from 147 Gm at...Ch. 8 - Prob. 25ECh. 8 - A rocket is launched vertically upward from Earths...Ch. 8 - What vertical launch speed is necessary to get a...Ch. 8 - Prob. 28ECh. 8 - Determine escape speeds from (a) Jupiters moon...Ch. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 32ECh. 8 - Example 8.2: Find the altitude and speed of a...Ch. 8 - Prob. 34ECh. 8 - Prob. 35ECh. 8 - Example 8.4: A coronal mass ejection (CME) is an...Ch. 8 - Example 8.4: In September 2017, the Cassini...Ch. 8 - The gravitational acceleration at a planets...Ch. 8 - Prob. 39PCh. 8 - If youre standing on the ground 15 m directly...Ch. 8 -
On January 1, 2019, the450-kg New Horizons...Ch. 8 - Equation 7.9 relates force to the derivative of...Ch. 8 - During the Apollo Moon landings, one astronaut...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Satellites A and B are in circular orbits, with A...Ch. 8 - The asteroid that exploded over Chelyabinsk,...Ch. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Neglecting air resistance, to what height would...Ch. 8 - Show that an object released from rest very far...Ch. 8 - Prob. 54PCh. 8 -
In 2017 North Korea developed ballistic missile...Ch. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Two meteoroids are 160,000 km from Earths center...Ch. 8 - Prob. 62PCh. 8 - A missiles trajectory takes it to a maximum...Ch. 8 - Prob. 64PCh. 8 - Mercurys orbital speed varies from 38.8 km/s at...Ch. 8 - Prob. 66PCh. 8 - Two satellites are in geostationary orbit but in...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - We derived Equation 8.4 on the assumption that the...Ch. 8 - Prob. 71PCh. 8 - As a member of the 2040 Olympic committee, youre...Ch. 8 - The Olympic Committee is keeping you busy! Youre...Ch. 8 - Tidal forces are proportional to the variation in...Ch. 8 - Spacecraft that study the Sun are often placed at...Ch. 8 - Prob. 76PPCh. 8 - Prob. 77PPCh. 8 - Prob. 78PPCh. 8 - The Global Positioning System (GPS) uses a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardAn average-sized asteroid located 5.0107km from Earth with mass 2.01013kg is detected headed directly toward Earth with speed of 2.0km/s . What will its speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)arrow_forwardFind the escape speed of a projectile from the surface of Jupiter.arrow_forward
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardA space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardRank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forward
- A satellite has a mass of 100 kg and is Located at 2.00 × 10 6m above the surface of Earth.(a) What is the potential energy associated with the satellites tins location? (b) What is the magnitude of the gravitational force on the satellite?arrow_forwardIn a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work ?W applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 969 kg969 kg and 241 km.241 km. Earth's mass and radius are 5.98×1024 kg5.98×1024 kg and 6370 km.arrow_forwardCalculate the gravitational potential energy of a 9.50 kg mass (a) on the surface of theEarth and (b) at an altitude of 325 km. (c) Take the difference between the results forparts (b) and (a), and compare with mgh, where h is 325 km.arrow_forward
- The energy to place a satellite into orbit consists of the work against gravity and addition kinetic energy. In this problem, you get the chance to calculate both components (gravitational and kinetic). (There is also 'wasted' energy to lift and propel the fuel, but we are ignoring that in this problem and focusing only on the bare minimum.) What is the gravitational work required to launch a satellite of mass m from Earth's surface to a circular orbit at an altitude of 700 km? Express your answer in terms of m, g, and R. Please use at least 5 significant figures in your answers. Constants you may find useful: G = 6.67 x 10-11 N·m2/kg2; MEarth = 5.98 x 1024 kg; REarth = 6.38 x 106 m. _______ *mgR How much kinetic energy must be added, assuming the satellite is launched from the equator, where the initial velocity is 463 m/s? _______ *mgR What is the total energy per kg of payload? (Use g=9.80 m/s2.)_______ MJ/kgarrow_forwardA 977-kg satellite orbits the Earth at a constant altitude of 101-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 205 km? 892.8 How is the total energy of an object in circular orbit related to the potential energy? MJ (b) What is the change in the system's kinetic energy? 178 Is the satellite moving faster or slower when it's orbit is at a higher altitude? MJ (c) What is the change in the system's potential energy? MJarrow_forwardA satellite has a mass of 103 kg and is located at 2.0 x 10° m above the surface of Earth. (a) What is the potential energy associated with the satellite at this location? (b) What is the magnitude of the gravitational force on the satellite? Need Help? Read Itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning