Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 51Q
To determine
(a)
To explain the characteristic of the solar system that all planetary orbits lie in nearly the same plane.
To determine
(b)
To explain that all planetary orbits in the solar system are nearly circular.
To determine
(c)
To explain that the planets orbit the Sun in the same direction in which the Sun itself rotates in the solar system.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
If you could visit another planetary system while the planets are forming, would you expect to see the condensation sequence at work, or do you think that process was most likely unique to our Solar System? How do the properties of the extrasolar planets discovered so far affect your answer?
Do you expect the most planetary system in the Universe have analogs to our Solar System’s asteroid belt and Kuiper Belt? Would all planetary systems show signs of an age of heavy bombardment?
If the solar nebula hypothesis is correct, do you think there are more planets in the Universe than stars? Why or why not?
We think the terrestrial planets formed around solid “seeds” that later grew over time through the accretion of rocks and metals.
a) Suppose the Earth grew to its present size in 1 million years through the accretion of particles averaging 100 grams each. On average, how many particles did the Earth capture per second, given that the mass of the Earth is = 5.972 × 10 ^24 kg ?
b) If you stood on Earth during its formation and watched a region covering 100 m^2, how many impacts would you expect to see in one hour. Use the impact rate you calculated in part a. You’ll need the following as well: the radius of the Earth is = 6.371 × 10 ^6 m and the surface area of the Earth is 4??^2Earth
How would the solar system be different if the solar nebula had cooled, with a temperature half its actual value? [select all that apply]
options:
There would be more comets.
Life would have been very unlikely to evolve here.
There would be no comets.
There would be fewer asteroids.
There would be more asteroids.
Jovian planets would have formed closer to Sun.
Terrestrial planets would be large
Chapter 8 Solutions
Universe: Stars And Galaxies
Ch. 8 - Prob. 1QCh. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Prob. 4QCh. 8 - Prob. 5QCh. 8 - Prob. 6QCh. 8 - Prob. 7QCh. 8 - Prob. 8QCh. 8 - Prob. 9QCh. 8 - Prob. 10Q
Ch. 8 - Prob. 11QCh. 8 - Prob. 12QCh. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - Prob. 15QCh. 8 - Prob. 16QCh. 8 - Prob. 17QCh. 8 - Prob. 18QCh. 8 - Prob. 19QCh. 8 - Prob. 20QCh. 8 - Prob. 21QCh. 8 - Prob. 22QCh. 8 - Prob. 23QCh. 8 - Prob. 24QCh. 8 - Prob. 25QCh. 8 - Prob. 26QCh. 8 - Prob. 27QCh. 8 - Prob. 28QCh. 8 - Prob. 29QCh. 8 - Prob. 30QCh. 8 - Prob. 31QCh. 8 - Prob. 32QCh. 8 - Prob. 33QCh. 8 - Prob. 34QCh. 8 - Prob. 35QCh. 8 - Prob. 36QCh. 8 - Prob. 37QCh. 8 - Prob. 38QCh. 8 - Prob. 39QCh. 8 - Prob. 40QCh. 8 - Prob. 41QCh. 8 - Prob. 42QCh. 8 - Prob. 43QCh. 8 - Prob. 44QCh. 8 - Prob. 45QCh. 8 - Prob. 46QCh. 8 - Prob. 47QCh. 8 - Prob. 48QCh. 8 - Prob. 49QCh. 8 - Prob. 50QCh. 8 - Prob. 51QCh. 8 - Prob. 52Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do we know when the solar system formed? Usually we say that the solar system is 4.5 billion years old. To what does this age correspond?arrow_forwardWhat can we learn about the formation of our solar system by studying other stars? Explain.arrow_forwardThe certain forest moon travels in an approximately circular orbit of radius 14,733,533 m with a period of 11 days 13 hr, around its gas giant exoplanet host. Calculate the mass of the exoplanet from this information. (Units: kilograms) (Note: if 'numerical answers only' appears, type your answer in the form '12.67e7' or '12.67e+7' with a lower case e instead of 'x10^7')arrow_forward
- 1) How massive would Earth had been if it had accreted hydrogen compounds in addition to the sme properties listed in table 7.1? (Assume the same properties of the ingredients as listed in the table) 2) Now imagine that Earth had been able to capture hydrogen and helium gas in the same proportions as listed in the table. How massive would it have been?arrow_forwardPlease help me with this question. A=.2arrow_forwardWhich is these facts is NOT explained by the nebular theory? There are two main types of planets: terrestrial and jovian Existance of comets and asteroids Planets orbit in the same direction and plane Number of planets of each type (4 terrestrial and 4 jovian)arrow_forward
- At present there are 8 planets in the solar system. In the early models, there were only 6 planets. What is the reason behind this? Describe a model of the modern solar system in terms of the number of planets, their arrangement and the model’s center.arrow_forwardPlanetary migration is a new process that has been added to the nebular theory of solar system formation. What type of planet, that does not exist in our solar system, made this change to the theory necessary? super-Earths Jovian planets beyond the "frost line" mini-Neptunes O hot Jupiters terrestrial planets in the habitable zonearrow_forwardDo you think Earth could retain an atmosphere of nitrogen for the age of the Solar System? Explain why or why notarrow_forward
- Kepler-444 is one of many stars with terrestrial planets that is over 10 billion a) What do you think the spectral type of Kepler-444 might be? b) How do stars of this spectral type end their lives? c) If evolution followed a similar course on a habitable pranet around a star similar to Kepler-444, it would be 5 billion years more advanced than we are. Let’s try to project our future and see what happens. In particular, suppose our civilization gets motivated enough to colonize another planet. Kepler indicates that most stars have potentially habitable (and colonizable) planets, so roughly how far away is the typical “nearest" planet? d) The New Horizons probe on its way to Pluto took 9 years to travel 30 AU. If we could send colony ships with the same average speed, roughly how long would it take to reach the typical nearest planet? уears old.arrow_forwardThe solar nebula idea suggests that other solar systems may include livable planets, but how likely is this? A half-page synopsis of NASA's Kepler project is due this week.arrow_forwardNearly all planets that astronomers have found orbiting other stars have been giant planets with masses more like Jupiter than Earth, and with orbits located very close to their parent stars. Does this prove that our Solar System is unique? Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY