Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 51P
(II) Show that the escape velocity for any satellite in a circular orbit is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c) Suppose that the Earth's mass is doubled, but its radius remains unchanged. How will this change the escape velocity?
O The escape velocity will be doubled.
O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by v2).
O The escape velocity will be halved.
O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2).
O The escape velocity will be unchanged.
(d) Suppose that the Earth's radius is doubled, but its mass remains unchanged (i.e. R = 1.28 x 107 m and M = 5.97 x 1024 kg). How will the escape velocity be affected?
O The escape velocity will be doubled.
O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by 2).
O The escape velocity will be halved.
O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2).
O The escape velocity will be unchanged.
(e) Suppose that the Earth's mass and radius are both doubled (i.e. R = 1.28 x 10' m and M = 1.19 x 1025 kg).…
Calculate the escape speed from the earth, if in lunar orbit.
Question
a) A satellite of mass m = 3.6kg orbits the Earth 300km ab ove the Earth'ssurface. How much do es the p otential energy of the satellite change when it islaunched from the surface of the Earth to its orbit?
b) By assuming the orbit is circular and the satellite is held in its orbit bygravity, show that the p erio d T of the satellite's orbit can b e expressed as(see image)where r is the distance of the satellite from the Earth's centre and g is theacceleration due to gravity.
c) Using the mean radius of the Earth of R = 6400km, calculate the tangentialspeed of the satellite in its orbit.
d) If the satellite is launched by ro cket from the Equator, how much do es thekinetic energy of the satellite change when it is placed into this orbit? Do esmost of the energy supplied by the ro cket to the satellite go into the satellite'skinetic energy or the p otential energy?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
6.10 A 12.0-kg package in a mail-sorting room slides 2.00 m down a chute that is inclined at 53.0° below the ho...
University Physics (14th Edition)
A 250-Hz tuning fork is struck and begins to vibrate. A sound-level meter is located 34.00 m away. It takes the...
University Physics Volume 1
31. Your forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can withstand o...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
49. Figure 15.32 show a pV diagram for an ideal gas in which its pressure tripled from a to b when 534 J of hea...
College Physics (10th Edition)
The Andromeda Galaxy is 2 million light years from the Milky Way. Although nothing can go faster than light, it...
Essential University Physics (3rd Edition)
43. A solenoid is near a piece of iron, as shown in Figure P24.43. When a current is present in the solenoid, a...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An average-sized asteroid located 5.0107km from Earth with mass 2.01013kg is detected headed directly toward Earth with speed of 2.0km/s . What will its speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)arrow_forwardFind the escape speed of a projectile from the surface of Mars.arrow_forward(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass mE, radius RE) and place it in a circular low earth orbit—that is, an orbit whose altitude above the earth’s surface is much less than RE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than RE = 6370 km.) Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the spacecraft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”arrow_forward
- IIIIIIIty (11ee nom the pull of gravity) surface of the earth An object would have to have enough kinetic energy to equal the potential energy at infinity. Ek = Epg 1/2 m v2 = G m¡m2r rearranging for v: v = /2 Gmr ex. The escape velocity at the surface of the earth is approximately 8 km/s. What is the escape velocity for a planet whose radius is 4 times and whose mass is 100 times that of earth?arrow_forwardAssume a new planet discovered has a mass (1/81) that of Earth and a radius (1/4) that of Earth. Estimate the escape speed for a spacecraft from the surface of that planet. The escape speed from the surface of the Earth is 11.2 km/s.arrow_forward(4) How much work (in Joules) is done on a 1kg object to lift it from the center of the Earth to its surface? The gravity force in Newtons on a 1 kg object at distance r from the center of the Earth is given by: F(r) = 0.0015r. The radius of the Earth is R = 6, 371km.arrow_forward
- Show that the escape velocity of a body from the surface of the earth is 2 Vc where Vc is the critical velocity of a body when it is orbiting very close to the earth's surface.arrow_forwardAt a particular point in orbit a satellite in an elliptical orbit has a gravitational PE of 6000 MJ with respect to Earth's surface and a KE of 5000 MJ. Later in its orbit, the satellite 's PE is 7000 MJ. What is its KE at that point? Explain.arrow_forward(II) A 65-kg person decides to lose weight by sleeping onehour less per day, using the time for light activity. How muchweight (or mass) can this person expect to lose in 1 year,assuming no change in food intake? Assume that 1 kg offat stores about 40,000 kJ of energyarrow_forward
- (II) (a) Show that the total mechanical energy of a satellite (mass m) orbiting at a distance r from the center of the Earth (mass ME) is 1 GMME if U = 0 at r = ∞. (b) Show that although friction causes the value of E to decrease slowly, kinetic energy must actu- ally increase if the orbit remains a circle. 1/2arrow_forwardWhat is the escape speed from the surface of Earth? Assume there is no energy loss from air resistance. Compare this to the escape speed from the Sun, starting from Earth's orbit. (1.12 x 104 m/s, 4.21 x 104 m/s)arrow_forwardA satellite on a circular low Earth orbit moves at a constant speed and is subject to the gravitational force of the Earth. Is there any work done on the satellite. Explain your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY