(a)
The angular distance in arcseconds between the star 2M1207 and its planet, seen from Earth, considering this star is 170 light years from Earth.
(a)

Answer to Problem 47Q
Solution:
Explanation of Solution
Given data:
The star 2M1207 is 170 light years from Earth.
Formula used:
Write the expression for the small angle formula.
Here,
Explanation:
Recall the expression for the small angle formula.
Substitute 55 au for
Conclusion:
Hence, the angular distance in arcseconds between the star 2M1207 and its planet is
(b)
The orbital period of the orbiting star 2M1207, whose mass is 0.025 times that of the Sun, by considering that the distance between the star and its planet is the semi-major axis of the orbit.
(b)

Answer to Problem 47Q
Solution:
Explanation of Solution
Given data:
The mass of star 2M1207 is 0.025 times that of the Sun.
Formula used:
Write the formula for the relation between orbital period and orbital distance according to Kepler’s third law.
Here,
Explanation:
The formula for the relation between orbital period and orbital distance for Sun, according to Kepler’s third law is written as,
Here, subscript ‘Sun’ is used for the respective quantities of the Sun.
The formula for the relation between orbital period and orbital distance for star 2M1207, according to Kepler’s third law is written as,
Here, subscript ‘2M1207’ is used for the respective quantities of the star 2M1207.
Divide equation (2) by equation (1).
Substitute 1 yr for
Conclusion:
Hence, the orbital period for star 2M1207 is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forward
- Pls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward1. The piston in the figure has a mass of 0.5 kg. The infinitely long cylinder is pushed upward at a constant velocity. The diameters of the cylinder and piston are 10 cm and 9 cm, respectively, and there is oil between them with v = 10⁻⁴ m^2/s and γ = 8,000 N/m³. At what speed must the cylinder ascend for the piston to remain at rest?arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning





