Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 47Q

(a)

To determine

The angular distance in arcseconds between the star 2M1207 and its planet, seen from Earth, considering this star is 170 light years from Earth.

(a)

Expert Solution
Check Mark

Answer to Problem 47Q

Solution:

1.1 arcsec.

Explanation of Solution

Given data:

The star 2M1207 is 170 light years from Earth.

Formula used:

Write the expression for the small angle formula.

α=D(206265)d

Here, α is the small angle, D is the orbital distance, and d is the distance from the observer.

Explanation:

Recall the expression for the small angle formula.

α=D(206265 arcseconds)d

Substitute 55 au for D, 170 ly for d.

α=(55 au)(206265 arcsec)(170 ly)(63,240 au1 ly)=1.1 arcsec

Conclusion:

Hence, the angular distance in arcseconds between the star 2M1207 and its planet is 1.1 arcsec.

(b)

To determine

The orbital period of the orbiting star 2M1207, whose mass is 0.025 times that of the Sun, by considering that the distance between the star and its planet is the semi-major axis of the orbit.

(b)

Expert Solution
Check Mark

Answer to Problem 47Q

Solution:

2580 yrs.

Explanation of Solution

Given data:

The mass of star 2M1207 is 0.025 times that of the Sun.

Formula used:

Write the formula for the relation between orbital period and orbital distance according to Kepler’s third law.

P2=(4π2GM)a3

Here, P is the period, G is the gravitational constant, M is the mass of planet or star, and a is the orbital distance.

Explanation:

The formula for the relation between orbital period and orbital distance for Sun, according to Kepler’s third law is written as,

PSun2=(4π2GMSun)aSun3 …… (1)

Here, subscript ‘Sun’ is used for the respective quantities of the Sun.

The formula for the relation between orbital period and orbital distance for star 2M1207, according to Kepler’s third law is written as,

P2M12072=(4π2GM2M1207)a2M12073 …… (2)

Here, subscript ‘2M1207’ is used for the respective quantities of the star 2M1207.

Divide equation (2) by equation (1).

P2M12072PSun2=(4π2GM2M1207)a2M12073(4π2GMSun)aSun3P2M12072=(MSun)(a2M12073)(M2M1207)(aSun3)(PSun2)

Substitute 1 yr for PSun, 0.025MSun for M2M1207, 1 au for aSun and 55 au for a2M1207.

P2M1207=(MSun)(55 au)3(0.025MSun)(1 au)3(1 yr)2=2580 yrs

Conclusion:

Hence, the orbital period for star 2M1207 is 2580 yrs.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You have a summer internship at NASA and are working on plans for a new space station to be launched into orbit around the Earth. The design of the space station is shown. It is to be constructed in the shape of a hollow ring of mass 58,500 kg. The structures other than the ring shown in the figure have negligible mass compared to the ring. Members of the crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 125 m. The thickness of the ring is very small compared to the radius, so we can model the ring as a hoop. At rest when constructed, the ring is to be set rotating about its axis so that the people standing inside on this deck experience an effective free-fall acceleration equal to g. The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. Your supervisor asks you to determine the following: (a) the time interval during which the rockets must be fired if each…
The polar ice caps have a combined mass of about 2.65 × 1019 kg. If all of the ice in the polar ice caps melted, by how much time would the length of a day (Earth's rotational period) change? For simplicity, assume each ice cap is an identical thin solid disk with a radius of 7.20 x 105 m. Find the change both in seconds and as a percentage of duration of a day. change in time percent change (No Response) s (No Response) %
. A space probe in outer space has a gyroscope within it used for rotation and stabilization. The moment of inertia of the gyroscope is I = 17.5 kg m² about the axis of the gyroscope, and the moment of inertia of the rest of the space probe is I = 5.00 × 105 kg • m² about the same axis. Initially both the space probe and gyroscope are not rotating. The gyroscope is then switched on and it nearly instantly starts rotating at an angular speed of 110 rad/s. How long (in s) should the gyroscope operate at this speed in order to change the space probe's orientation by 24.0°? (No Response) s
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY