
(a)
The Sun’s orbital speed in meters per second considers that it moves in a small orbit of radius
(a)

Answer to Problem 45Q
Solution:
12.5 m/s
Explanation of Solution
Given data:
The Sun moves in a small orbit of radius
Formula used:
Write the expression for the circumference
Write the expression for the speed
Here,
Write the formula for the conversion of the unit of time from years to seconds.
Explanation:
Recall the expression for the circumference
The expression for the Sun’s orbital speed
Substitute
Conclusion:
Hence, the Sun’s orbital speed in meters per second is 12.5 m/s.
(b)
The angular diameter of the Sun’s orbit as seen by an alien astronomer from a hypothetical planet orbiting the star Vega, which is 25 ly from the Sun. Also explain whether, or not, the Sun’s motion is discernible if the alien astronomer could measure positions to an accuracy of 0.001 arcsec.
(b)

Answer to Problem 45Q
Solution:
Explanation of Solution
Given data:
The hypothetical planet is orbiting the star Vega, which is 25 ly from the Sun.
Formula used:
Write the small angle formula.
Here,
Write the expression for the relation between the diameter D and the radius r.
Write the expression for converting the unit of distance from light years to meters.
Explanation:
Recall the expression for the relation between diameter D and radius r.
Substitute
Recall the expression for the small angle formula.
Substitute
The above value tells that the motion would just barely be discernible if the alien astronomer could measure positions to an accuracy of 0.001 arcsec.
Conclusion:
Hence, the angular diameter of the Sun’s orbit is
(c)
The answer, same as explained in part (b), but by considering that the astronomer is located on a hypothetical planet in the Pleiades star cluster, 360 ly from the Sun. Then provide an explanation whether the Sun’s motion is discernible to this astronomer.
(c)

Answer to Problem 45Q
Solution:
No, because the value of
Explanation of Solution
Given data:
The astronomer is located on a hypothetical planet in the Pleiades star cluster, 360 ly from the Sun.
Formula used:
Write the small angle formula.
Here,
Write the expression for converting the unit of distance from light years to meters.
Explanation:
Recall the small angle formula.
Substitute
The above value of
Conclusion:
Hence, the Sun’s motion would not be discernible to this astronomer.
Want to see more full solutions like this?
Chapter 8 Solutions
Universe
- E = кедо Xo A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10. (a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.) (b) What is the direction of the electric field at the origin? O O O O O O G -y +z ○ -z +x -x +yarrow_forwardInclude free body diagramarrow_forward2 Spring 2025 -03 PITT Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of cold coast at a constant velocity. You can neglect air resistance in both parts. friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier Given: 9 = ? 8=10° 4=0.1arrow_forward
- dry 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a c piston into a steel cylinder. What is the normal force between the piston and cyli=030 What force would she have to exert if the steel parts were oiled? k F = 306N 2 =0.03 (arrow_forwardInclude free body diagramarrow_forwardInclude free body diagramarrow_forward
- Test 2 МК 02 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a dry = 0.03 (15 pts) piston into a steel cylinder. What is the normal force between the piston and cylinder? What force would she have to exert if the steel parts were oiled? Mk Giren F = 306N MK-0.3 UK = 0.03 NF = ?arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 ke? a = 350 m/s 2arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245garrow_forward
- Using Table 17-4, determine the approximate temperature of metal that has formed a dark blue color.arrow_forwardA positively charged disk has a uniform charge per unit area σ. dq R P x The total electric field at P is given by the following. Ek [2 - x (R² + x2) 1/2 Sketch the electric field lines in a plane perpendicular to the plane of the disk passing through its center.arrow_forwardConsider a closed triangular box resting within a horizontal electric field of magnitude E = 8.02 104 N/C as shown in the figure below. A closed right triangular box with its vertical side on the left and downward slope on the right rests within a horizontal electric field vector E that points from left to right. The box has a height of 10.0 cm and a depth of 30.0 cm. The downward slope of the box makes an angle of 60 degrees with the vertical. (a) Calculate the electric flux through the vertical rectangular surface of the box. kN · m2/C(b) Calculate the electric flux through the slanted surface of the box. kN · m2/C(c) Calculate the electric flux through the entire surface of the box. kN · m2/Carrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





