Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 47P
To determine
The ratio of the radius of two planets A and B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c) Suppose that the Earth's mass is doubled, but its radius remains unchanged. How will this change the escape velocity?
O The escape velocity will be doubled.
O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by v2).
O The escape velocity will be halved.
O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2).
O The escape velocity will be unchanged.
(d) Suppose that the Earth's radius is doubled, but its mass remains unchanged (i.e. R = 1.28 x 107 m and M = 5.97 x 1024 kg). How will the escape velocity be affected?
O The escape velocity will be doubled.
O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by 2).
O The escape velocity will be halved.
O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2).
O The escape velocity will be unchanged.
(e) Suppose that the Earth's mass and radius are both doubled (i.e. R = 1.28 x 10' m and M = 1.19 x 1025 kg).…
(c) A small object was found to drop above the surface of a big planet with no initial
velocity and it fell 13.5 m in 3 s. If the radius of the planet is 5.82 x 10° m, calculate
the small object's acceleration during the fall and the mass of the big planet.
(II) Determine the distance from the Earth’s center to apoint outside the Earth where the gravitational accelerationdue to the Earth is 1/10 of its value at the Earth’s surface.
Chapter 8 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An average-sized asteroid located 5.0107km from Earth with mass 2.01013kg is detected headed directly toward Earth with speed of 2.0km/s . What will its speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)arrow_forwardIIIIIIIty (11ee nom the pull of gravity) surface of the earth An object would have to have enough kinetic energy to equal the potential energy at infinity. Ek = Epg 1/2 m v2 = G m¡m2r rearranging for v: v = /2 Gmr ex. The escape velocity at the surface of the earth is approximately 8 km/s. What is the escape velocity for a planet whose radius is 4 times and whose mass is 100 times that of earth?arrow_forward13-62 Comets move around the sun in very elliptical orbits. At its closest approach, in 1986 Comet Halley was 8.79 x 10' km from the sun and moving with a speed of 54.6 km/s. What was the comet's speed when it crossed Neptune's orbit in 2006? (Neptune: mean distance fromn the sun 4.50 x 102 m; Mass 1.03 x 1026 kg)arrow_forward
- Consider a distant planet that has twice the mass and twice the radius of the Earth.Is the escape speed on this planet greater than, less than, or equal to the escape speedon the Earth? Explainarrow_forwardAssume a new planet discovered has a mass (1/81) that of Earth and a radius (1/4) that of Earth. Estimate the escape speed for a spacecraft from the surface of that planet. The escape speed from the surface of the Earth is 11.2 km/s.arrow_forwarda) We send a probe to orbit a nearby asteroid and take some pictures of it. The probe enters an orbit that puts it 850m from the centre of the asteroid. If the probe moves at 12m/s, determine the mass of the asteroidarrow_forward
- The escape velocity is defined to be the minimum speed with which an object of mass m must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass M. The escape velocity is a function of the distance of the object from the center of the planet R, but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question "How fast does my rocket have to go to escape from the surface of the planet?" The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy Etotal of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. ► View Available Hint(s) Etotal = Submit Part B Consider the motion of an object between a point close to the planet and a point very…arrow_forwardc) i) Relative to the sun, calculate the minimum speed for a spacecraft to escape the solar system if it starts at the Earth’s orbit.(Given M sun = 1.989 x 10 ^39 kg, distance from Earth to Sun = 1.5 x 10^11 km) ii) Voyager 1 achieved a maximum speed of 125000 km/h on its way to photograph Jupiter. Calculate the distance from the Sun for this speed sufficient to escape the solar system.arrow_forwardQ. 55 A planet in a distant solar system is 10 times more massive than the earth and its radius is 10 times smaller. Given that the escape velocity from the surface of the planet would be: (a) 0.11 km/s (b) 1.1 km/s (c) 11 km/s (d) 110 km/sarrow_forward
- (I) At the surface of a certain planet, the gravitational acceleration g has a magnitude of 12.0 m/s2 A 24.0-kg brass ball is transported to this planet. What is (a) the mass of the brass ball on the Earth and on the planet, and (b) the weightof the brass ball on the Earth and on the planet?arrow_forwardWhat will be the escape velocity from the surface of the moon if it is 11.2 km/s at the surface of the earth? Assume that g at the surface of the moon is /5 that at the surface of the earth and the radius of the moon is '/4 that of the earth.arrow_forward(a) At what height above Earth’s surface is the energy required to lift a satellite to that height equal to the kinetic energy required for the satellite to be in orbit at that height? (b) For greater heights, which is greater, the energy for lifting or the kinetic energy for orbiting?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning